DOI: 10.1002/anie.201611907
The stress-inducible molecular chaperone, HSP72, is an important therapeutic target in oncology, but inhibiting this protein with small molecules has proven particularly challenging. Validating HSP72 inhibitors in cells is difficult owing to competition with the high affinity and abundance of its endogenous nucleotide substrates. We hypothesized this could be overcome using a cysteine-targeted irreversible inhibitor. Using rational design, we adapted a validated 8-N-benzyladenosine ligand for covalent bond formation and confirmed targeted irreversible inhibition. However, no cysteine in the protein was modified; instead, we demonstrate that lysine-56 is the key nucleophilic residue. Targeting this lysine could lead to a new design paradigm for HSP72 chemical probes and drugs.
A blog highlighting recent publications in the area of covalent modification of proteins, particularly relating to covalent-modifier drugs. @CovalentMod on Twitter, @covalentmod@mstdn.science on Mastodon, and @covalentmod.bsky.social on BlueSky
Subscribe to:
Posts (Atom)
Discovery of an Orally Bioavailable Reversible Covalent SARS-CoV-2 Mpro Inhibitor with Pan-Coronavirus Activity
Qian Wen Tan, Subramanyam Vankadara, Jia Yi Fong, Yi Yang See, Nithya Baburajendran, Pearly Shuyi Ng, Weijun Xu, Yee Khoon Yeo, Weiling Wang...
-
DOI Ansgar Oberheide, Maxime van den Oetelaar, Jakob Scheele, Jan Borggräfe, Semmy Engelen, Michael Sattler, Christian Ottmann, ...
-
Design, synthesis and biological evaluation of the activity-based probes for FGFR covalent inhibitorDandan Zhu, Zijian Zheng, Huixin Huang, Xiaojuan Chen, Shuhong Zhang, Zhuchu Chen, Ting Liu, Guangyu Xu, Ying Fu, Yongheng Chen, European Jo...
-
Yoav Shamir, Nir London bioRxiv 2025.03.19.642201 doi: https://doi.org/10.1101/2025.03.19.642201 Recent years have seen an explosion in the...