Abdullah Akbar, Nicole M.R. McNeil, Marie R. Albert, Viviane Ta, Gautam Adhikary, Karine Bourgeois, Richard L. Eckert, and Jeffrey W. Keillor
J. Med. Chem., 2017
DOI: 10.1021/acs.jmedchem.7b01070
Human tissue transglutaminase (hTG2) is a multifunctional enzyme. It is primarily known for its calcium-dependent transamidation activity that leads to formation of an isopeptide bond between glutamine and lysine residues found on the surface of proteins, but it is also a GTP binding protein. Overexpression and unregulated hTG2 activity has been associated with numerous human diseases, including cancer stem cell survival and metastatic phenotype. Herein, we present a series of targeted covalent inhibitors (TCIs) based on our previously reported Cbz-Lys scaffold. From this structure-activity relationship (SAR) study, novel irreversible inhibitors were identified that block the transamidation activity of hTG2 and allosterically abolish its GTP binding ability with a high degree of selectivity and efficiency (kinact/KI > 105 M-1min-1). One optimized inhibitor (VA4) was also shown to inhibit epidermal cancer stem cell invasion with an EC50 of 3.9 µM, representing a significant improvement over our previously reported ‘hit’ NC9.
A blog highlighting recent publications in the area of covalent modification of proteins, particularly relating to covalent-modifier drugs.
Oncogenic KRAS G12C: Kinetic and Redox Characterization of Covalent Inhibition
Minh V. Huynh, Derek Parsonage, Tom E. Forshaw, Venkat R. Chirasani, G. Aaron Hobbs, Hanzhi Wu, Jingyun Lee, Cristina M. Furdui, Leslie B. P...
-
Katharine Gilbert, Aini Vuorinen, Arron Aatkar Peter Pogány, Jonathan Pettinger, Joanna M. Kirkpatrick, Katrin Rittinger∥, David House, Glen...
-
Yejin Jung, Naotaka Noda, Junichiro Takaya, Masahiro Abo, Kohei Toh, Ken Tajiri, Changyi Cui, Lu Zhou, Shin-ichi Sato, and Motonari Uesugi A...
-
Madeline E Kavanagh, Benjamin D Horning, Roli Khattri, Nilotpal Roy, Justine P Lu, Landon R Whitby, Jaclyn C Brannon, Albert Parker, Joel M ...