Dominic G. Hoch, Daniel Abegg, and Alexander Adibekian [web]
Chem. Commun., 2018, doi: 10.1039/C8CC01485J
Proteomic profiling using bioorthogonal chemical probes that selectively react with certain amino acids is now a widely used method in life sciences to investigate enzymatic activities, study posttranslational modifications and discover novel covalent inhibitors. Over the past two decades, researchers have developed selective probes for several different amino acids, including lysine, serine, cysteine, threonine, tyrosine, aspartate and glutamate. Among these amino acids, cysteines are particularly interesting due to their highly diverse and complex biochemical role in our cells. In this feature article, we focus on the chemical probes and methods used to study cysteines in complex proteomes.
A blog highlighting recent publications in the area of covalent modification of proteins, particularly relating to covalent-modifier drugs. @CovalentMod on Twitter, @covalentmod@mstdn.science on Mastodon, and @covalentmod.bsky.social on BlueSky
Ninhydrin as a covalent warhead for chemical proteomic-enabled discovery and selective engagement of reactive arginines
Andrew Ecker, Andreas Langen, Chloe Fields, José Luis Montaňo, Minh Tran, Ian Bass Seiple, Balyn W Zaro bioRxiv 2026.01.05.697388; doi: ht...
-
Design, synthesis and biological evaluation of the activity-based probes for FGFR covalent inhibitorDandan Zhu, Zijian Zheng, Huixin Huang, Xiaojuan Chen, Shuhong Zhang, Zhuchu Chen, Ting Liu, Guangyu Xu, Ying Fu, Yongheng Chen, European Jo...
-
DOI Ansgar Oberheide, Maxime van den Oetelaar, Jakob Scheele, Jan Borggräfe, Semmy Engelen, Michael Sattler, Christian Ottmann, ...
-
Nafizul Haque Kazi, Nikolas Klink, Kai Gallant, Gian-Marvin Kipka & Malte Gersch Nat Struct Mol Biol , 2025 https://doi.org/10.1038/s415...
