Thursday, February 28, 2019

The Alkyne Moiety as a Latent Electrophile in Irreversible Covalent Small Molecule Inhibitors of Cathepsin K

J. Am. Chem. Soc.2019141 (8), 3507–3514

Irreversible covalent inhibitors can have a beneficial pharmacokinetic/pharmacodynamics profile but are still often avoided due to the risk of indiscriminate covalent reactivity and the resulting adverse effects. To overcome this potential liability, we introduced an alkyne moiety as a latent electrophile into small molecule inhibitors of cathepsin K (CatK). Alkyne-based inhibitors do not show indiscriminate thiol reactivity but potently inhibit CatK protease activity by formation of an irreversible covalent bond with the catalytic cysteine residue, confirmed by crystal structure analysis. The rate of covalent bond formation (kinact) does not correlate with electrophilicity of the alkyne moiety, indicative of a proximity-driven reactivity. Inhibition of CatK-mediated bone resorption is validated in human osteoclasts. Together, this work illustrates the potential of alkynes as latent electrophiles in small molecule inhibitors, enabling the development of irreversible covalent inhibitors with an improved safety profile.

A multicenter, open-label, first-in-human study of TYRA-200 in advanced intrahepatic cholangiocarcinoma and other solid tumors with activating FGFR2 gene alterations (SURF201).

Jordi Rodon Ahnert ,  Sameek Roychowdhury ,  Haley Ellis ,  Fernando F. Blanco ,  Timothy Burn ,  Jennifer Michelle Davis ,  Alex Balcer ,  ...