Janice H. Xu, Jerome Eberhardt, Brianna Hill-Payne, Gonzalo E. González-Páez, José Omar Castellón, Benjamin F. Cravatt, Stefano Forli, Dennis W. Wolan, Keriann M. Backus
bioRxiv, 2019
doi: 10.1101/721951
Caspases are a critical class of proteases involved in regulating programmed cell death and other biological processes. Selective inhibitors of individual caspases, however, are lacking, due in large part to the high structural similarity found in the active sites of these enzymes. We recently discovered a small-molecule inhibitor, 63-R, that covalently binds the zymogen, or inactive precursor (pro-form), of caspase-8, but not other caspases, pointing to an untapped potential of procaspases as targets for chemical probes. Realizing this goal would benefit from a structural understanding of how small molecules bind to and inhibit caspase zymogens. There have, however, been very few reported procaspase structures. Here, we employ x-ray crystallography to elucidate a procaspase-8 crystal structure in complex with 63-R, which reveals large conformational changes in active-site loops that accommodate the intramolecular cleavage events required for protease activation. Combining these structural insights with molecular modeling and mutagenesis-based biochemical assays, we elucidate key interactions required for 63-R inhibition of procaspase-8. Our findings inform the mechanism of caspase activation and its disruption by small molecules, and, more generally, have implications for the development of small molecule inhibitors and/or activators that target alternative (e.g., inactive precursor) protein states to ultimately expand the druggable proteome.
A blog highlighting recent publications in the area of covalent modification of proteins, particularly relating to covalent-modifier drugs. @CovalentMod on Twitter and @covalentmod@mstdn.science on Mastodon
Covalent drug discovery using sulfur(VI) fluoride exchange warheads
Huang Huang, Lyn H. Jones Expert Opinion on Drug Discovery , 2023 https://doi.org/10.1080/17460441.2023.2218642 Covalent drug discovery has ...
-
Zhao, Z.; Bourne, P. E. ChemRxiv 2022 . https://doi.org/10.26434/chemrxiv-2022-nlb0m Kinase-targeted drug discovery for cancer therapy ha...
-
Wang, S.; Hadisurya, M.; Tao, W. A.; Dykhuizen, E.; Krusemark, C. ChemRxiv 2022 . https://doi.org/10.26434/chemrxiv-2022-tvgn1 Targeted co...
-
Jian Ding, Guo Li, Hejun Liu, Lulu Liu, Ying Lin, Jingyan Gao, Guoqiang Zhou, Lingling Shen, Mengxi Zhao, Yanyan Yu, Weihui Guo, Ulrich Homm...