Monday, April 17, 2023

Rational Design of Highly Potent and Selective Covalent MAP2K7 Inhibitors

Dalton R. Kim, Meghan J. Orr, Ada J. Kwong, Kristine K. Deibler, Hasan H. Munshi, Cory Seth Bridges, Taylor Jie Chen, Xiaoyu Zhang, H. Daniel Lacorazza, and Karl A. Scheidt
ACS Medicinal Chemistry Letters 2023

DOI: 10.1021/acsmedchemlett.3c00029

The mitogen-activated protein kinase signaling cascade is conserved across eukaryotes, where it plays a critical role in the regulation of activities including proliferation, differentiation, and stress responses. This pathway propagates external stimuli through a series of phosphorylation events, which allows external signals to influence metabolic and transcriptional activities. Within the cascade, MEK, or MAP2K, enzymes occupy a molecular crossroads immediately upstream to significant signal divergence and cross-talk. One such kinase, MAP2K7, also known as MEK7 and MKK7, is a protein of great interest in the molecular pathophysiology underlying pediatric T cell acute lymphoblastic leukemia (T-ALL). Herein, we describe the rational design, synthesis, evaluation, and optimization of a novel class of irreversible MAP2K7 inhibitors. With a streamlined one-pot synthesis, favorable in vitro potency and selectivity, and promising cellular activity, this novel class of compounds wields promise as a powerful tool in the study of pediatric T-ALL.



From Mechanism-Based Retaining Glycosidase Inhibitors to Activity-Based Glycosidase Profiling

  Marta Artola, Johannes M. F. G. Aerts, Gijsbert A. van der Marel, Carme Rovira, Jeroen D. C. Codée, Gideon J. Davies, and Herman S. Overkl...