Tuesday, August 8, 2023

Simultaneous Covalent Modification of K-Ras(G12D) and K-Ras(G12C) with Tunable Oxirane Electrophiles

Zhongtang Yu, Xiaoqiang He, Ruiliu Wang, Xinxin Xu, Zhang Zhang, Ke Ding, Zhi-Min Zhang, Yi Tan, and Zhengqiu Li
Journal of the American Chemical Society 2023

DOI: 10.1021/jacs.3c05899

Owing to their remarkable pharmaceutical properties compared to those of noncovalent inhibitors, the development of targeted covalent inhibitors (TCIs) has emerged as a powerful method for cancer treatment. The K-Ras mutant, which is prevalent in multiple cancers, has been confirmed to be a crucial drug target in the treatment of various malignancies. However, although the K-Ras(G12D) mutation is present in up to 33% of K-Ras mutations, no covalent inhibitors targeting K-Ras(G12D) have been developed to date. The relatively weak nucleophilicity of the acquired aspartic acid (12D) residue in K-Ras may be the reason for this. Herein, we present the first compound capable of covalently engaging both K-Ras(G12D) and K-Ras(G12C) mutants. Proteome profiling revealed that this compound effectively conjugates with G12C and G12D residues, modulating the protein functions in situ. These findings offer a unique pathway for the development of novel dual covalent inhibitors.



Discovery and development of Krazati (adagrasib/MRTX849), a potent, selective, orally bioavailable, covalent KRASG12C(OFF) inhibitor

Adrian L. Gill, Mathew A. Marx RAS Drug Discovery Past, Present and Future 2025 , 205-227 https://doi.org/10.1016/B978-0-443-21861-3.00017-...