Friday, December 1, 2023

Discovery of a Drug-like, Natural Product-Inspired DCAF11 Ligand Chemotype

Xue, G., Xie, J., Hinterndorfer, M. et al. Discovery of a Drug-like, Natural Product-Inspired DCAF11 Ligand Chemotype. Nat Commun 14, 7908 (2023). https://doi.org/10.1038/s41467-023-43657-6

Targeted proteasomal and autophagic protein degradation, often employing bifunctional modalities, is a new paradigm for modulation of protein function. In an attempt to explore protein degradation by means of autophagy we combine arylidene-indolinones reported to bind the autophagy-related LC3B-protein and ligands of the PDEδ lipoprotein chaperone, the BRD2/3/4-bromodomain containing proteins and the BTK- and BLK kinases. Unexpectedly, the resulting bifunctional degraders do not induce protein degradation by means of macroautophagy, but instead direct their targets to the ubiquitin-proteasome system. Target and mechanism identification reveal that the arylidene-indolinones covalently bind DCAF11, a substrate receptor in the CUL4A/B-RBX1-DDB1-DCAF11 E3 ligase. The tempered α, β-unsaturated indolinone electrophiles define a drug-like DCAF11-ligand class that enables exploration of this E3 ligase in chemical biology and medicinal chemistry programs. The arylidene-indolinone scaffold frequently occurs in natural products which raises the question whether E3 ligand classes can be found more widely among natural products and related compounds.


 

Histidine-Covalent Stapled Alpha-Helical Peptides Targeting hMcl-1

Giulia Alboreggia, Parima Udompholkul, Carlo Baggio, Kendall Muzzarelli, Zahra Assar, and Maurizio Pellecchia Journal of Medicinal Chemistry...