Monday, April 22, 2024

DrugMap: A quantitative pan-cancer analysis of cysteine ligandability

Mariko Takahashi, Harrison B. Chong,Siwen Zhang, Tzu-Yi Yang,Matthew J. Lazarov,Stefan Harry,Michelle Maynard, Brendan Hilbert,Ryan D. White,Heather E. Murrey, Chih-Chiang Tsou, Kira Vordermark, Jonathan Assaad, Magdy Gohar, Benedikt R. Dürr et al.

Cell, 2024
DOI: https://doi.org/10.1016/j.cell.2024.03.027

Cysteine-focused chemical proteomic platforms have accelerated the clinical development of covalent inhibitors for a wide range of targets in cancer. However, how different oncogenic contexts influence cysteine targeting remains unknown. To address this question, we have developed “DrugMap,” an atlas of cysteine ligandability compiled across 416 cancer cell lines. We unexpectedly find that cysteine ligandability varies across cancer cell lines, and we attribute this to differences in cellular redox states, protein conformational changes, and genetic mutations. Leveraging these findings, we identify actionable cysteines in NF-κB1 and SOX10 and develop corresponding covalent ligands that block the activity of these transcription factors. We demonstrate that the NF-κB1 probe blocks DNA binding, whereas the SOX10 ligand increases SOX10-SOX10 interactions and disrupts melanoma transcriptional signaling. Our findings reveal heterogeneity in cysteine ligandability across cancers, pinpoint cell-intrinsic features driving cysteine targeting, and illustrate the use of covalent probes to disrupt oncogenic transcription-factor activity.



Discovery of a Tunable Heterocyclic Electrophile 4-Chloro-pyrazolopyridine That Defines a Unique Subset of Ligandable Cysteines

Hong-Rae Kim, David P. Byun, Kalyani Thakur, Jennifer Ritchie, Yixin Xie, Ronald Holewinski, Kiall F. Suazo, Mckayla Stevens, Hope Liechty, ...