Tuesday, August 26, 2025

Potent Inducers of Paraptosis through Electronic Tuning of Hemicyanine Electrophiles

uan F. Tamez-Fernández, Craig F. Steven, Jade Nguyen, and Pablo Rivera-Fuentes

Journal of the American Chemical Society 2025

DOI: 10.1021/jacs.5c07109

Paraptosis is a distinct form of programmed cell death characterized by cytoplasmic vacuolization, mitochondrial swelling, and endoplasmic reticulum (ER) dilation, offering an alternative to apoptosis for therapeutic applications. In this study, we identified a hemicyanine derivative that is a potent paraptosis inducer in two cancer cell lines. This compound triggers hallmark paraptotic features, including ER swelling, mitochondrial morphological changes, increased superoxide production, and caspase-independent cell death. This activity is dependent on the ability of the probe to modify thiols covalently. Proteomic analysis using a biotinylated, activity-based probe revealed Sec23 homologue A and GDP-dissociation inhibitor alpha as potential targets implicated in paraptosis activation. This lead compound already displayed some degree of selectivity, exemplified by its minimal interaction with well-known nucleophilic protein targets such as protein disulfide isomerases. These findings establish the hemicyanine chemical family as a promising scaffold for paraptosis research and suggest potential as a therapeutic lead for diseases where traditional apoptosis pathways are dysregulated.

Group Competition Strategy for Covalent Ligand Discovery

Zhihao Guo, Yunzhu Meng, Boyuan Zhao, Weidi Xiao, and Chu Wang Journal of the American Chemical Society 2026 DOI: 10.1021/jacs.5c18150 As a ...