Tuesday, January 6, 2026

Ninhydrin as a covalent warhead for chemical proteomic-enabled discovery and selective engagement of reactive arginines

Andrew Ecker, Andreas Langen, Chloe Fields, José Luis Montaňo, Minh Tran, Ian Bass Seiple, Balyn W Zaro

bioRxiv 2026.01.05.697388; 

doi: https://doi.org/10.64898/2026.01.05.697388

Covalent molecules have emerged as next-generation therapeutics and as powerful tools for perturbing fundamental biological processes. Chemical proteomic methods to screen for reactive proteinaceous amino acids have transformed small-molecule discovery pipelines, but their application remains mostly limited to sites where reactive cysteines and lysines are present. Here we report a ninhydrin-based warhead that selectively modifies arginine residues, thus expanding the repertoire of amino acids targetable by covalent molecules. Specifically, we developed alkyne-functionalized variants of ninhydrin to establish an arginine-specific chemical proteomics platform, enabling the classification of more than 6,800 unique reactive arginines. These studies uncovered potential modification sites on disease-relevant proteins, including reactive arginines within catalytic sites that are essential for function. By endowing a reversible small molecule inhibitor of cyclophilin A with a ninhydrin warhead, we achieved selective, covalent engagement, and attenuation of enzymatic activity, highlighting the potential for targeting arginines in future therapeutic development campaigns. These findings establish ninhydrin as a warhead for studying arginine reactivity and modulating protein function.

Group Competition Strategy for Covalent Ligand Discovery

Zhihao Guo, Yunzhu Meng, Boyuan Zhao, Weidi Xiao, and Chu Wang Journal of the American Chemical Society 2026 DOI: 10.1021/jacs.5c18150 As a ...