Sunday, August 6, 2017

Development of Novel Peptide-based Michael Acceptors Targeting Rhodesain and Falcipain-2 for the Treatment of Neglected Tropical Diseases (NTDs)

Santo Preveti, Roberta Ettari, Sandro Cosconati, Giorgio Amendola, Khawla Chouchene, Annika Wagner, Ute A. Hellmich, Kathrin Ulrich, R. Luise Krauth-Siegel, Peter R. Wich, Ira Schmid, Tanja Schirmeister, Jiri Gut, Philip J. Rosenthal, Silvana Grasso, and Maria Zappalà

J. Med. Chem. 2017

DOI: 10.1021/acs.jmedchem.7b00405

This paper describes the development of a class of peptide-based inhibitors as novel antitrypanosomal and antimalarial agents. The inhibitors are based on a characteristic peptide-sequence for the inhibition of the cysteine proteases rhodesain of T. b. rhodesiense and falcipain-2 of P. falciparum. We exploited the reactivity of novel unsaturated electrophilic functions such as vinyl-sulfones, -ketones, -esters and –nitriles. The Michael acceptors inhibited both rhodesain and falcipain-2, at nanomolar and micromolar level, respectively. In particular, the vinyl ketone 3b has emerged as a potent rhodesain inhibitor (k2nd= 67•106 M-1 min-1), endowed with a picomolar binding affinity (Ki = 38 pM), coupled with a single-digit micromolar activity against T. b. brucei (EC50 = 2.97 µM), thus being considered as a novel lead compound for the discovery of novel effective antitrypanosomal agents.

Oncogenic KRAS G12C: Kinetic and Redox Characterization of Covalent Inhibition

Minh V. Huynh, Derek Parsonage, Tom E. Forshaw, Venkat R. Chirasani, G. Aaron Hobbs, Hanzhi Wu, Jingyun Lee, Cristina M. Furdui, Leslie B. P...