Monday, March 2, 2020

Cysteine-specific protein multi-functionalization and disulfide bridging using 3-bromo-5-methylene pyrrolones

Yingqian Zhang, Chuanlong Zang, Guoce An, Mengdi Shang, Zenghui Cui, Gong Chen, Zhen Xi & Chuanzheng Zhou

Nature Communications 2020
DOI: 10.1038/s41467-020-14757-4

Many reagents have been developed for cysteine-specific protein modification. However, few of them allow for multi-functionalization of a single Cys residue and disulfide bridging bioconjugation. Herein, we report 3-bromo-5-methylene pyrrolones (3Br-5MPs) as a simple, robust, and versatile class of reagents for cysteine-specific protein modification. These compounds can be facilely synthesized via a one-pot mild reaction and they show comparable tagging efficiency but higher cysteine specificity than the maleimide counterparts. The addition of cysteine to 3Br-5MPs generates conjugates that are amenable to secondary addition by another thiol or cysteine, making 3Br-5MPs valuable for multi-functionalization of a single cysteine and disulfide bridging bioconjugation. The labeling reaction and subsequent treatments are mild enough to produce stable and active protein conjugates for biological applications.

Fig. 1

Oncogenic KRAS G12C: Kinetic and Redox Characterization of Covalent Inhibition

Minh V. Huynh, Derek Parsonage, Tom E. Forshaw, Venkat R. Chirasani, G. Aaron Hobbs, Hanzhi Wu, Jingyun Lee, Cristina M. Furdui, Leslie B. P...