Susanna K. Elledge, Hai L. Tran, Alec H. Christian, Veronica Steri, Byron Hann, F. Dean Toste, Christopher J. Chang, James A. Wells
Proceedings of the National Academy of Sciences 2020
DOI: 10.1073/pnas.1920561117
Site-specific chemical modification of proteins remains a critical need for bioconjugation. Here we explore the key parameters needed for efficient, selective, and stable modification of methionine using recently developed oxaziridine reagents, called ReACT. We systematically tested various oxaziridine compounds, and scanned accessible and buried sites in a therapeutic antibody for breast cancer to determine the chemical and structural parameters for most stable and efficient modification. We show these adducts are highly stable over days and can support the delivery of toxic payloads to regress tumors in animals. These studies on this important chemical modification expand our capability to site-specifically modify proteins and antibodies for many applications.
A blog highlighting recent publications in the area of covalent modification of proteins, particularly relating to covalent-modifier drugs. @CovalentMod on Twitter and @covalentmod@mstdn.science on Mastodon
Covalent drug discovery using sulfur(VI) fluoride exchange warheads
Huang Huang, Lyn H. Jones Expert Opinion on Drug Discovery , 2023 https://doi.org/10.1080/17460441.2023.2218642 Covalent drug discovery has ...
-
Zhao, Z.; Bourne, P. E. ChemRxiv 2022 . https://doi.org/10.26434/chemrxiv-2022-nlb0m Kinase-targeted drug discovery for cancer therapy ha...
-
Wang, S.; Hadisurya, M.; Tao, W. A.; Dykhuizen, E.; Krusemark, C. ChemRxiv 2022 . https://doi.org/10.26434/chemrxiv-2022-tvgn1 Targeted co...
-
Jian Ding, Guo Li, Hejun Liu, Lulu Liu, Ying Lin, Jingyan Gao, Guoqiang Zhou, Lingling Shen, Mengxi Zhao, Yanyan Yu, Weihui Guo, Ulrich Homm...