An aromatic trifluoromethyl ketone moiety was characterized as a new warhead for covalently reversible kinase inhibitor design to target the non-catalytic cysteine residue. Potent and selective covalently reversible inhibitors of FGFR4 kinase were successfully designed and synthesized by utilizing this new warhead. The binding mode of a representative inhibitor was fully characterized by using multiple technologies including MALDI-TOF mass spectrometry, dialysis assay and X-ray crystallographic studies etc. This functional group was also successfully applied to discovery of a new JAK3 inhibitor, suggesting its potential application in designing other kinase inhibitors.
A blog highlighting recent publications in the area of covalent modification of proteins, particularly relating to covalent-modifier drugs. @CovalentMod on Twitter, @covalentmod@mstdn.science on Mastodon, and @covalentmod.bsky.social on BlueSky
Thursday, October 7, 2021
Discovery of an Orally Bioavailable Reversible Covalent SARS-CoV-2 Mpro Inhibitor with Pan-Coronavirus Activity
Qian Wen Tan, Subramanyam Vankadara, Jia Yi Fong, Yi Yang See, Nithya Baburajendran, Pearly Shuyi Ng, Weijun Xu, Yee Khoon Yeo, Weiling Wang...
-
DOI Ansgar Oberheide, Maxime van den Oetelaar, Jakob Scheele, Jan Borggräfe, Semmy Engelen, Michael Sattler, Christian Ottmann, ...
-
Design, synthesis and biological evaluation of the activity-based probes for FGFR covalent inhibitorDandan Zhu, Zijian Zheng, Huixin Huang, Xiaojuan Chen, Shuhong Zhang, Zhuchu Chen, Ting Liu, Guangyu Xu, Ying Fu, Yongheng Chen, European Jo...
-
Yoav Shamir, Nir London bioRxiv 2025.03.19.642201 doi: https://doi.org/10.1101/2025.03.19.642201 Recent years have seen an explosion in the...