Sunday, October 10, 2021

Sulforaphane covalently interacts with the transglutaminase 2 cancer maintenance protein to alter its structure and suppress its activity

Rorke EA, Adhikary G, Szmacinski H, Lakowicz JR, Weber DJ, Godoy-Ruiz R, Puranik P, Keillor JW, Gates EWJ, Eckert RL. 

 Mol Carcinog. 2021

Type 2 transglutaminase (TG2) functions as an important cancer cell survival protein in a range of cancers including epidermal squamous cell carcinoma. TG2 exists in open and closed conformations each of which has a distinct and mutually exclusive activity. The closed conformation has GTP-binding/GTPase activity while the open conformation functions as a transamidase to catalyze protein-protein crosslinking. GTP-binding/GTPase activity is required for TG2 maintenance of the aggressive cancer phenotype. Thus, identifying agents that convert TG2 from the closed to the open GTP-binding/GTPase inactive conformation is an important cancer prevention/treatment strategy. Sulforaphane (SFN) is an important diet-derived cancer prevention agent that is known to possess a reactive isothiocyanate group and has potent anticancer activity. Using a biotin-tagged SFN analog (Biotin-ITC) and kinetic analysis we show that SFN covalently and irreversibly binds to recombinant TG2 to inhibit transamidase activity and shift TG2 to an open/extended conformation, leading to a partial inhibition of GTP binding. We also show that incubation of cancer cells or cancer cell extract with Biotin-ITC results in formation of a TG2/Biotin-ITC complex and that SFN treatment of cancer cells inhibits TG2 transamidase activity and shifts TG2 to an open/extended conformation. These findings identify TG2 as a direct SFN anticancer target in epidermal squamous cell carcinoma.



Oncogenic KRAS G12C: Kinetic and Redox Characterization of Covalent Inhibition

Minh V. Huynh, Derek Parsonage, Tom E. Forshaw, Venkat R. Chirasani, G. Aaron Hobbs, Hanzhi Wu, Jingyun Lee, Cristina M. Furdui, Leslie B. P...