Suman Rao, Deepak Gurbani, Guangyan Du, Robert A Everley, Christopher M Browne, Apirat Chaikuad, Tan Li, Martin Schröder, Sudershan Gondi, Scott B Ficarro, Taebo Sim, Nam Doo Kim, Matthew J Berberich, Stefan Knapp, Jarrod A Marto, Kenneth D Westover, Peter K Sorger, Nathanael S Gray
Cell Chemical Biology, 2019
DOI: https://doi.org/10.1016/j.chembiol.2019.02.021
Covalent kinase inhibitors, which typically target cysteine residues, represent an important class of clinically relevant compounds. Approximately 215 kinases are known to have potentially targetable cysteines distributed across 18 spatially distinct locations proximal to the ATP-binding pocket. However, only 40 kinases have been covalently targeted, with certain cysteine sites being the primary focus. To address this disparity, we have developed a strategy that combines the use of a multi-targeted acrylamide-modified inhibitor, SM1-71, with a suite of complementary chemoproteomic and cellular approaches to identify additional targetable cysteines. Using this single multi-targeted compound, we successfully identified 23 kinases that are amenable to covalent inhibition including MKNK2, MAP2K1/2/3/4/6/7, GAK, AAK1, BMP2K, MAP3K7, MAPKAPK5, GSK3A/B, MAPK1/3, SRC, YES1, FGFR1, ZAK (MLTK), MAP3K1, LIMK1, and RSK2. The identification of nine of these kinases previously not targeted by a covalent inhibitor increases the number of targetable kinases and highlights opportunities for covalent kinase inhibitor development.
A blog highlighting recent publications in the area of covalent modification of proteins, particularly relating to covalent-modifier drugs. @CovalentMod on Twitter, @covalentmod@mstdn.science on Mastodon, and @covalentmod.bsky.social on BlueSky
Discovery of an Orally Bioavailable Reversible Covalent SARS-CoV-2 Mpro Inhibitor with Pan-Coronavirus Activity
Qian Wen Tan, Subramanyam Vankadara, Jia Yi Fong, Yi Yang See, Nithya Baburajendran, Pearly Shuyi Ng, Weijun Xu, Yee Khoon Yeo, Weiling Wang...
-
DOI Ansgar Oberheide, Maxime van den Oetelaar, Jakob Scheele, Jan Borggräfe, Semmy Engelen, Michael Sattler, Christian Ottmann, ...
-
Design, synthesis and biological evaluation of the activity-based probes for FGFR covalent inhibitorDandan Zhu, Zijian Zheng, Huixin Huang, Xiaojuan Chen, Shuhong Zhang, Zhuchu Chen, Ting Liu, Guangyu Xu, Ying Fu, Yongheng Chen, European Jo...
-
Yoav Shamir, Nir London bioRxiv 2025.03.19.642201 doi: https://doi.org/10.1101/2025.03.19.642201 Recent years have seen an explosion in the...