Thursday, October 15, 2020

Assessment of tractable cysteines by covalent fragments screening

Petri, L., Ábrányi-Balogh, P., Imre, T., Pálfy, G., Perczel, A., Knez, D., Hrast, M., Gobec, M., Sosič, I., Nyíri, K., Vértessy, B..G., Jänsch, N., Desczyk, C., Meyer-Almes, F., Ogris, I., Grdadolnik, S..G., Iacovino, L..G., Binda, C., Gobec, S. and Keserű, G..M. 

ChemBioChem. 2020

 doi:10.1002/cbic.202000700

Targeted covalent inhibition and the use of irreversible chemical probes are important strategies in chemical biology and drug discovery. To date, the availability and reactivity of cysteine residues amenable for covalent targeting have been evaluated by proteomic and computational tools. Here, we present a toolbox of fragments containing a 3,5‐bis(trifluoromethyl)phenyl core that was equipped with chemically diverse electrophilic warheads showing a range of reactivities. We characterized the library members for their reactivity, aqueous stability and specificity for nucleophilic amino acids. By screening this library against a set of enzymes amenable for covalent inhibition, we showed that this approach experimentally characterized the accessibility and reactivity of targeted cysteines. Interesting covalent fragment hits were obtained for all investigated cysteine‐containing enzymes.

Covalent Recruitment of NEDD4 for Targeted Protein Degradation: Rational Design of Small Molecular Degraders

Xiaoqiang He, Shihan Zeng, Yalei Wen, Tao Yang, Chaoming Huang, Yifang Li, Zhang Zhang, Ke Ding, Tongzheng Liu, Yi Tan, and Zhengqiu Li J. A...