A blog highlighting recent publications in the area of covalent modification of proteins, particularly relating to covalent-modifier drugs. @CovalentMod on Twitter, @covalentmod@mstdn.science on Mastodon, and @covalentmod.bsky.social on BlueSky
Wednesday, July 29, 2020
Multiparameter kinetic analysis for covalent fragment optimization using quantitative irreversible tethering (qIT)
Tuesday, July 28, 2020
Strategies for Tuning the Selectivity of Chemical Probes that Target Serine Hydrolases
Wednesday, July 22, 2020
The Chemical Biology of Reversible Lysine Post-translational Modifications
Monday, July 20, 2020
Site-directed ligand discovery
An irreversible inhibitor to probe the role of Streptococcus pyogenes cysteine protease SpeB in evasion of host complement defenses
Monday, July 13, 2020
Chemoproteomics-Enabled Ligand Screening Yields Covalent RNF114-Based Degraders that Mimic Natural Product Function
Thursday, July 9, 2020
Targeted Degradation of Oncogenic KRASG12C by VHL-Recruiting PROTACs
Monday, July 6, 2020
Boceprevir, GC-376, and calpain inhibitors II, XII inhibit SARS-CoV-2 viral replication by targeting the viral main protease
A new coronavirus SARS-CoV-2, also called novel coronavirus 2019 (2019-nCoV), started to circulate among humans around December 2019, and it is now widespread as a global pandemic. The disease caused by SARS-CoV-2 virus is called COVID-19, which is highly contagious and has an overall mortality rate of 6.35% as of May 26, 2020. There is no vaccine or antiviral available for SARS-CoV-2. In this study, we report our discovery of inhibitors targeting the SARS-CoV-2 main protease (Mpro). Using the FRET-based enzymatic assay, several inhibitors including boceprevir, GC-376, and calpain inhibitors II, and XII were identified to have potent activity with single-digit to submicromolar IC50 values in the enzymatic assay. The mechanism of action of the hits was further characterized using enzyme kinetic studies, thermal shift binding assays, and native mass spectrometry. Significantly, four compounds (boceprevir, GC-376, calpain inhibitors II and XII) inhibit SARS-CoV-2 viral replication in cell culture with EC50 values ranging from 0.49 to 3.37 µM. Notably, boceprevir, calpain inhibitors II and XII represent novel chemotypes that are distinct from known substrate-based peptidomimetic Mpro inhibitors. A complex crystal structure of SARS-CoV-2 Mpro with GC-376, determined at 2.15 Å resolution with three protomers per asymmetric unit, revealed two unique binding configurations, shedding light on the molecular interactions and protein conformational flexibility underlying substrate and inhibitor binding by Mpro. Overall, the compounds identified herein provide promising starting points for the further development of SARS-CoV-2 therapeutics.
Thursday, July 2, 2020
Covalent Kinase Inhibitors: An Overview
Gehringer M. (2020) Covalent Kinase Inhibitors: An Overview. In: Topics in Medicinal Chemistry. Springer, Berlin, Heidelberg
https://doi.org/10.1007/7355_2020_103
Covalent targeting has experienced a revival in the last decade, especially in the area of protein kinase inhibitor development. Generally, covalent inhibitors make use of an electrophilic moiety often termed “warhead” to react with a nucleophilic amino acid, most frequently a cysteine. High efficacy and excellent selectivity in the kinome have been achieved by addressing poorly conserved, non-catalytic cysteine residues with so-called targeted covalent inhibitors (TCIs). Despite the challenges associated with covalent modifiers, application of the TCI approach for the discovery of new treatments has been very successful with six covalent kinase inhibitors having gained approval in the last few years. A multitude of reactive chemical probes and tool compounds has further been developed. Beside cysteine, other nucleophilic amino acids including tyrosine and lysine have also been addressed with suitable electrophiles and covalent-reversible chemistry has recently complemented our toolbox for designing covalent kinase inhibitors. Covalent ligands have also been used in the framework of chemical-genetics approaches or to tackle allosteric pockets, which are often difficult to address.
This chapter aims at providing a general introduction to covalent kinase inhibitors and an overview of the current state of research highlighting major targeting strategies, developments, and advances in this field. More detailed information on certain targets and approaches can be found in dedicated chapters of this book.
Covalent inhibitors of the RAS binding domain of PI3Ka impair tumor growth driven by RAS and HER2
Joseph E Klebba, Nilotpal Roy, Steffen M Bernard, Stephanie Grabow, Melissa A. Hoffman, Hui Miao, Junko Tamiya, Jinwei Wang, Cynthia Berry, ...
-
Linqi Cheng Yixian Wang, Yiming Guo, Sophie S. Zhang Han Xiao C ell Chemical Biology, 2024 Volume 31, 3, 428 - 445 https://doi.org/10.10...
-
Guanghui Tang , Wei Wang , Chengjun Zhu , Huisi Huang , Peng Chen , Xuan Wang , Manyi Xu , Jie Sun , Chong-Jing Zhang , Qicai Xiao ...
-
Mariko Takahashi, Harrison B. Chong,Siwen Zhang, Tzu-Yi Yang,Matthew J. Lazarov,Stefan Harry,Michelle Maynard, Brendan Hilbert,Ryan D. White...