Tuesday, May 31, 2022

Covalent labeling of a chromatin reader domain using proximity-reactive cyclic peptides

Meng Yao Zhang,   Hyunjun Yang, Gloria Ortiz,   Michael J. Trnka,   Nektaria Petronikolou,   Alma L. Burlingame,  William F. DeGrado  and  Danica Galonić Fujimori

Chemical Science, 2022

Chemical probes for chromatin reader proteins are valuable tools for investigating epigenetic regulatory mechanisms and evaluating whether the target of interest holds therapeutic potential. Developing potent inhibitors for the plant homeodomain (PHD) family of methylation readers remains a difficult task due to the charged, shallow and extended nature of the histone binding site that precludes effective engagement of conventional small molecules. Herein, we describe the development of novel proximity-reactive cyclopeptide inhibitors for PHD3—a trimethyllysine reader domain of histone demethylase KDM5A. Guided by the PHD3–histone co-crystal structure, we designed a sidechain-to-sidechain linking strategy to improve peptide proteolytic stability whilst maintaining binding affinity. We have developed an operationally simple solid-phase macrocyclization pathway, capitalizing on the inherent reactivity of the dimethyllysine ε-amino group to generate scaffolds bearing charged tetraalkylammonium functionalities that effectively engage the shallow aromatic ‘groove’ of PHD3. Leveraging a surface-exposed lysine residue on PHD3 adjacent to the ligand binding site, cyclic peptides were rendered covalent through installation of an arylsulfonyl fluoride warhead. The resulting lysine-reactive cyclic peptides demonstrated rapid and efficient labeling of the PHD3 domain in HEK293T lysates, showcasing the feasibility of employing proximity-induced reactivity for covalent labeling of this challenging family of reader domains.



Thursday, May 19, 2022

Reversible lysine-targeted probes reveal residence time-based kinase selectivity

Tangpo Yang, Adolfo Cuesta, Xiaobo Wan, Gregory B. Craven, Brad Hirakawa, Penney Khamphavong, Jeffrey R. May, John C. Kath, John D. Lapek Jr., Sherry Niessen, Alma L. Burlingame, Jordan D. Carelli & Jack Taunton 

Nat Chem Biol (2022). 

https://doi.org/10.1038/s41589-022-01019-1

The expansion of the target landscape of covalent inhibitors requires the engagement of nucleophiles beyond cysteine. Although the conserved catalytic lysine in protein kinases is an attractive candidate for a covalent approach, selectivity remains an obvious challenge. Moreover, few covalent inhibitors have been shown to engage the kinase catalytic lysine in animals. We hypothesized that reversible, lysine-targeted inhibitors could provide sustained kinase engagement in vivo, with selectivity driven in part by differences in residence time. By strategically linking benzaldehydes to a promiscuous kinase binding scaffold, we developed chemoproteomic probes that reversibly and covalently engage >200 protein kinases in cells and mice. Probe–kinase residence time was dramatically enhanced by a hydroxyl group ortho to the aldehyde. Remarkably, only a few kinases, including Aurora A, showed sustained, quasi-irreversible occupancy in vivo, the structural basis for which was revealed by X-ray crystallography. We anticipate broad application of salicylaldehyde-based probes to proteins that lack a druggable cysteine.



Improved Electrophile Design for Exquisite Covalent Molecule Selectivity

José L. Montaño, Brian J. Wang, Regan F. Volk, Sara E. Warrington, Virginia G. Garda, Katherine L. Hofmann, Leo C. Chen, and Balyn W. Zaro

ACS Chemical Biology 2022

DOI: 10.1021/acschembio.1c00980

Covalent inhibitors are viable therapeutics. However, off-target reactivity challenges the field. Chemists have attempted to solve this issue by varying the reactivity attributes of electrophilic warheads. Here, we report the development of an approach to increase the selectivity of covalent molecules that is independent of warhead reactivity features and can be used in concert with existing methods. Using the scaffold of the Bruton’s tyrosine kinase (BTK) inhibitor Ibrutinib for our proof-of-concept, we reasoned that increasing the steric bulk of fumarate-based electrophiles on Ibrutinib should improve selectivity via the steric exclusion of off-targets but retain rates of cysteine reactivity comparable to that of an acrylamide. Using chemical proteomic techniques, we demonstrate that elaboration of the electrophile to a tert-butyl (t-Bu) fumarate ester decreases time-dependent off-target reactivity and abolishes time-independent off-target reactivity. While an alkyne-bearing probe analogue of Ibrutinib has 247 protein targets, our t-Bu fumarate probe analogue has only 7. Of these 7 targets, BTK is the only time-independent target. The t-Bu inhibitor itself is also more selective for BTK, reducing off-targets by 70%. We investigated the consequences of treatment with Ibrutinib and our t-Bu analogue and discovered that only 8 proteins are downregulated in response to treatment with the t-Bu analogue compared to 107 with Ibrutinib. Of these 8 proteins, 7 are also downregulated by Ibrutinib and a majority of these targets are associated with BTK biology. Taken together, these findings reveal an opportunity to increase cysteine-reactive covalent inhibitor selectivity through electrophilic structure optimization.



Covalent labeling of a chromatin reader domain using proximity-reactive cyclic peptides

Zhang, Meng Yao and Yang, Hyunjun and Ortiz, Gloria and Trnka, Michael J. and Petronikolou, Nektaria and Burlingame, Alma L. and DeGrado, William F. and Fujimori, Danica Galonić

Chem. Sci. 2022

http://dx.doi.org/10.1039/D2SC00555G

Chemical probes for chromatin reader proteins are valuable tools for investigating epigenetic regulatory mechanisms and evaluating whether the target of interest holds therapeutic potential. Developing potent inhibitors for the plant homeodomain (PHD) family of methylation readers remains a difficult task due to the charged, shallow and extended nature of the histone binding site that precludes effective engagement of conventional small molecules. Herein, we describe the development of novel proximity-reactive cyclopeptide inhibitors for PHD3—a trimethyllysine reader domain of histone demethylase KDM5A. Guided by the PHD3–histone co-crystal structure, we designed a sidechain-to-sidechain linking strategy to improve peptide proteolytic stability whilst maintaining binding affinity. We have developed an operationally simple solid-phase macrocyclization pathway, capitalizing on the inherent reactivity of the dimethyllysine ε-amino group to generate scaffolds bearing charged tetraalkylammonium functionalities that effectively engage the shallow aromatic ‘groove’ of PHD3. Leveraging a surface-exposed lysine residue on PHD3 adjacent to the ligand binding site, cyclic peptides were rendered covalent through installation of an arylsulfonyl fluoride warhead. The resulting lysine-reactive cyclic peptides demonstrated rapid and efficient labeling of the PHD3 domain in HEK293T lysates, showcasing the feasibility of employing proximity-induced reactivity for covalent labeling of this challenging family of reader domains.

Chemoproteomics-Enabled Discovery of a Covalent Molecular Glue Degrader Targeting NF-κB

Elizabeth A King, Yoojin Cho, Dustin Dovala, Jeffrey M McKenna, John A Tallarico, Markus Schirle, Daniel K Nomura

bioRxiv 2022.05.18.492542; 

doi: https://doi.org/10.1101/2022.05.18.492542

Targeted protein degradation using heterobifunctional Proteolysis-Targeting Chimeras (PROTACs) or molecular glues has arisen as a powerful therapeutic modality for degrading disease targets. While PROTAC design is becoming more modular and straightforward, the discovery of novel molecular glue degraders has been more challenging. While several recent studies have showcased phenotypic screening and counter-screening approaches to discover new molecular glue degraders, mechanistically elucidating the ternary complex induced by the small molecule that led to the initial phenotype, i.e. identifying the degraded target and relevant components of the ubiquitin-proteasome system, has remained cumbersome and laborious. To overcome these obstacles, we have coupled the screening of a covalent ligand library for anti-proliferative effects in leukemia cells with quantitative proteomic and chemoproteomic approaches to rapidly discover both novel covalent molecular glue degraders and their associated ternary complex components and anti-proliferative mechanisms. We have identified a cysteine-reactive covalent ligand EN450 that impairs leukemia cell viability in a NEDDylation and proteasome-dependent manner. Chemoproteomic profiling revealed covalent interaction of EN450 with an allosteric C111 in the E2 ubiquitin ligase UBE2D. Follow-up quantitative proteomic profiling revealed the proteasome-mediated degradation of the oncogenic transcription factor NFKB1 as a putative degradation target. Subsequent validation studies demonstrated that EN450 induced the ternary complex formation between UBE2D and NFKB1 and that both UBE2D and NFKB1 were important for the anti-proliferative mechanisms of EN450. Our study thus puts forth the discovery of a novel molecular glue degrader that uniquely induced the proximity of an E2 ligase with a transcription factor to induce its degradation and anti-proliferative effects in cancer cells. Taken more broadly, our study showcases a rapid and modular approach for discovering novel covalent molecular glue degraders and their respective ternary complex components in an unbiased fashion.

Tuesday, May 10, 2022

Rapid covalent labeling of a GPCR on living cells using a nanobody-epitope tag pair to interrogate receptor pharmacology

Chino C CabaltejaRoss W Cheloha

Peptide epitope tags offer a valuable means for detection and manipulation of protein targets for which high quality detection reagents are not available. Most commonly used epitope tags are bound by conventional, full-size antibodies (Abs). The complex architecture of Abs complicates their application in protein engineering and intracellular applications. To address these shortcomings, single domain antibodies (nanobodies, Nbs) that recognize short peptide epitopes have become increasingly prized. Here we characterize the interaction between a Nb (Nb6E) and a 14-mer peptide epitope. We identify residues in the peptide epitope essential for high affinity binding. Using this information in combination with computational modeling we propose a mode of interaction between Nb6E and this epitope. We apply this nanobody-epitope pair to augment the potency of a ligand at an engineered adenosine A2A receptor. This characterization of the nanobody-epitope pair opens the door to diverse applications including mechanistic studies of G protein-coupled receptor function.


Monday, May 2, 2022

In situ identification of cellular drug targets in mammalian tissue

 Zhengyuan Pang, Michael A. Schafroth, Daisuke Ogasawara, Yu Wang, Victoria Nudell, Neeraj K. Lal, Dong Yang, Kristina Wang, Dylan M. Herbst, Jacquelyn Ha, Carlos Guijas, Jacqueline L. Blankman, Benjamin F. Cravatt, Li Ye,

Cell 2022

https://doi.org/10.1016/j.cell.2022.03.040

The lack of tools to observe drug-target interactions at cellular resolution in intact tissue has been a major barrier to understanding in vivo drug actions. Here, we develop clearing-assisted tissue click chemistry (CATCH) to optically image covalent drug targets in intact mammalian tissues. CATCH permits specific and robust in situ fluorescence imaging of target-bound drug molecules at subcellular resolution and enables the identification of target cell types. Using well-established inhibitors of endocannabinoid hydrolases and monoamine oxidases, direct or competitive CATCH not only reveals distinct anatomical distributions and predominant cell targets of different drug compounds in the mouse brain but also uncovers unexpected differences in drug engagement across and within brain regions, reflecting rare cell types, as well as dose-dependent target shifts across tissue, cellular, and subcellular compartments that are not accessible by conventional methods. CATCH represents a valuable platform for visualizing in vivo interactions of small molecules in tissue.

Keywords: drug target engagement; drug distribution; molecular imaging; click chemistry; target identification; covalent inhibitor



Mutant-selective AKT inhibition through lysine targeting and neo-zinc chelation

Gregory B. Craven, Hang Chu, Jessica D. Sun, Jordan D. Carelli, Brittany Coyne, Hao Chen, Ying Chen, Xiaolei Ma, Subhamoy Das, Wayne Kong, A...