Wednesday, November 22, 2023

Lysine-Reactive N-Acyl-N-aryl Sulfonamide Warheads: Improved Reaction Properties and Application in the Covalent Inhibition of an Ibrutinib-Resistant BTK Mutant

Masaharu Kawano, Syunsuke Murakawa, Kenji Higashiguchi, Kenji Matsuda, Tomonori Tamura, and Itaru Hamachi

Journal of the American Chemical Society 2023
DOI: 10.1021/jacs.3c08740

The covalent inhibition of a target protein has gained widespread attention in the field of drug discovery. Most of the current covalent drugs utilize the high reactivity of cysteines toward modest electrophiles. However, there is a growing need for warheads that can target lysine residues to expand the range of covalently druggable proteins and to deal with emerging proteins with mutations resistant to cysteine-targeted covalent drugs. We have recently developed an N-acyl-N-alkyl sulfonamide (NASA) as a lysine-targeted electrophile. Despite its successful application, this NASA warhead suffered from instability in physiological environments, such as serum-containing medium, because of its high intrinsic reactivity. In this study, we sought to modify the structure of the NASA warhead and found that N-acyl-N-aryl sulfonamides (ArNASAs) are promising electrophiles for use in a lysine-targeted covalent inhibition strategy. We prepared a focused library of ArNASA derivatives with diverse structures and reactivity and identified several warhead candidates with suppressed hydrolysis-mediated inactivation and reduced nonspecific reactions with off-target proteins, without sacrificing the reactivity toward the target. These reaction properties enabled the improved covalent inhibition of intracellular heat shock protein 90 (HSP90) in the presence of serum and the development of the first irreversible inhibitor for ibrutinib-resistant Bruton’s tyrosine kinase (BTK) bearing the C481S mutation. This study clearly demonstrated the use of a set of ArNASA warheads to create highly potent covalent drugs and highlighted the importance of enriching the current arsenal of lysine-reactive warheads.


Saturday, November 11, 2023

Real-time monitoring of the reaction of KRAS G12C mutant specific covalent inhibitor by in vitro and in-cell NMR spectroscopy

Qingci Zhao, Ryoka Haga, Satoko Tamura, Ichio Shimada & Noritaka Nishida 

Sci Rep 13, 19253 (2023). 

https://doi.org/10.1038/s41598-023-46623-w

KRAS mutations are major drivers of various cancers. Recently, allele-specific inhibitors of the KRAS G12C mutant were developed that covalently modify the thiol of Cys12, thereby trapping KRAS in an inactive GDP-bound state. To study the mechanism of action of the covalent inhibitors in both in vitro and intracellular environments, we used real-time NMR to simultaneously observe GTP hydrolysis and inhibitor binding. In vitro NMR experiments showed that the rate constant of ARS-853 modification is identical to that of GTP hydrolysis, indicating that GTP hydrolysis is the rate-limiting step for ARS-853 modification. In-cell NMR analysis revealed that the ARS-853 reaction proceeds significantly faster than that in vitro, reflecting acceleration of GTP hydrolysis by endogenous GTPase proteins. This study demonstrated that the KRAS covalent inhibitor is as effective in the cell as in vitro and that in-cell NMR is a valuable validation tool for assessing the pharmacological properties of the drug in the intracellular context.



Thursday, November 9, 2023

Assessing Squarates as Amine-Reactive Probes

Katherine I. Taylor, Jordan S. Ho, Hallie O. Trial, Alan W. Carter, and Laura L. Kiessling

Journal of the American Chemical Society 2023

Probes that covalently label protein targets facilitate the identification of ligand-binding sites. Lysine residues are prevalent in the proteome, making them attractive substrates for covalent probes. However, identifying electrophiles that undergo amine-specific, regioselective reactions with binding site lysine residues is challenging. Squarates can engage in two sequential conjugate addition–elimination reactions with amines. Nitrogen donation reduces the second reaction rate, making the mono squaramide a mild electrophile. We postulated that this mild electrophilicity would demand a longer residence time near the amine, affording higher selectivity for binding site lysines. Therefore, we compared the kinetics of squarate and monosquaramide amine substitution to alternative amine bioconjugation handles. The data revealed that N-hydroxy succinimidyl esters react 4 orders of magnitude faster, consistent with their labeling promiscuity. Squarate reactivity can be tuned by a substitution pattern. Electron-withdrawing groups on the vinylogous ester or amide increase reaction rates. Dithionosquarates react more rapidly than squarates, while vinylogous thioester analogs, dithiosquarates, react more slowly. We assessed squarate selectively using the UDP-sugar processing enzyme GlfT2 from Mycobacterium tuberculosis, which possesses 21 surface-exposed lysines. The reaction predominately modified one lysine proximal to a binding site to afford covalent inhibition. These findings demonstrate the selectivity of squaric esters and squaramides, which is a critical feature for affinity-based chemoproteomic probes.



Dual-Probe Activity-Based Protein Profiling Reveals Site-Specific Differences in Protein Binding of EGFR-Directed Drugs

Wouter van Bergen, Kristina Žuna, Jan Fiala, Elena E. Pohl, Albert J.R. Heck, and Marc P. Baggelaar

ACS Chemical Biology 2024

DOI: 10.1021/acschembio.3c00637

preprint: https://doi.org/10.1101/2023.10.19.562725

Comparative, dose-dependent analysis of interactions between small molecule drugs and their targets, as well as off-targets, in complex proteomes is crucial for selecting optimal drug candidates. The affinity of small molecules for targeted proteins is largely dictated by interactions between amino acid side chains and these drugs. Thus, studying drug-protein interactions at an amino acid resolution provides a comprehensive understanding of drug selectivity and efficacy. In this study, we further refined the site-specific activity-based protein profiling strategy, PhosID-ABPP, on a timsTOF HT mass spectrometer. This refinement enables dual dose-dependent competition of inhibitors within a single cellular proteome. Here, a comparative analysis of two activity-based probes (ABPs), developed to selectively target the epidermal growth factor receptor (EGFR), namely PF-06672131 and PF-6422899, facilitated the simultaneous identification of ABP-specific binding sites at a proteome-wide scale within a cellular proteome. Dose-dependent probe-binding preferences for proteinaceous cysteines, even at low nanomolar ABP concentrations, could be revealed. Notably, while both ABPs showed comparable affinities for the EGFR, PF-06672131 had a broader off-target reactivity profile. In contrast, PF-6422899 exhibited higher affinity for the ERBB2 receptor and bound to catalytic cysteines in several other enzymes, which is likely to disrupt their catalytic activity. Notably, PF-06672131 also effectively labeled ADP/ATP translocase proteins at a concentration of just 1 nanomolar. Additionally, analysis of different binding sites within the EGF receptor and the voltage-dependent anion channel 2 revealed secondary binding sites of both probes and provided insights into the binding poses of inhibitors on these proteins. Insights from the PhosID-ABPP analysis of these two ABPs serve as a valuable resource for understanding drug on– and off-target engagement in a dose– and site-specific manner.

Tuesday, November 7, 2023

Graph Neural Networks for Identifying Protein-Reactive Compounds

Cano Gil, V. H.; Rowley, C. N.

ChemRxiv 2023

https://doi.org/10.26434/chemrxiv-2023-d0dqp

The identification of protein-reactive electrophilic compounds is critical to the design of new covalent modifier drugs, screening for toxic compounds, and the exclusion of reactive compounds from high throughput screening. In this work, we employ traditional and graph machine learning algorithms to classify molecules being reactive towards proteins or nonreactive. For training data, we built a new dataset, ProteinReactiveDB, comprised primarily of covalent and noncovalent inhibitors from DrugBank, BindingDB, and CovalentInDB databases. To assess the transferability of the trained models, we created a custom set of covalent and noncovalent inhibitors, which was constructed from recent literature. Baseline models were developed using Morgan fingerprints as training inputs, but they performed poorly when applied to compounds outside the training set. We then trained various Graph Neural Networks (GNNs), with the best GNN model achieving an Area Under the Receiver Operator Characteristic (AUROC) curve of 0.84, precision of 0.92, and recall of 0.73. We also explore the interpretability of these GNNs using Gradient Activation Mapping (GradCAM), which shows regions of the molecules GNNs deem most relevant when making a prediction. These maps indicated that our trained models can identify electrophilic functional groups in a molecule and classify molecules as protein-reactive based on their presence.



Covalent 14-3-3 Molecular Glues and Heterobifunctional Molecules Against Nuclear Transcription Factors and Regulators

Qian ShaoTuong Nghi DuongInji ParkDaniel K Nomura

14-3-3 proteins have the unique ability to bind and sequester a multitude of diverse phosphorylated signaling proteins and transcription factors. Many previous studies have shown that 14-3-3 interactions with specific phosphorylated substrate proteins can be enhanced through small-molecule natural product or fully synthetic molecular glue interactions. However, enhancing 14-3-3 interactions with both therapeutically intractable transcription factor substrates as well as potential neo-substrates to sequester and inhibit their function has remained elusive. One of the 14-3-3 proteins, 14-3-3 or SFN, has a cysteine C38 at the substrate binding interface near sites where previous 14-3-3σ molecular glues have been found to bind. In this study, we screened a fully synthetic cysteine-reactive covalent ligand library to identify molecular glues that enhance interaction of 14-3-3σ with not only druggable transcription factors such as estrogen receptor (ERα), but also challenging oncogenic transcription factors such as YAP and TAZ that are part of the Hippo transducer pathway. We identified a hit EN171 that covalently targets 14-3-3 to enhance 14-3-3 interactions with ERα, YAP, and TAZ leading to impaired estrogen receptor and Hippo pathway transcriptional activity. We further demonstrate that EN171 could not only be used as a molecular glue to enhance native protein interactions, but also could be used as a covalent 14-3-3 recruiter in heterobifunctional molecules to sequester nuclear neo-substrates such as BRD4 into the cytosol. Overall, our study reveals a covalent ligand that acts as a novel 14-3-3 molecular glue for challenging transcription factors such as YAP and TAZ and also demonstrates that these glues can be potentially utilized in heterobifunctional molecules to sequester nuclear neo-substrates out of the nucleus and into the cytosol to enable targeted protein localization.

Monday, November 6, 2023

Use of pyridazinediones for tuneable and reversible covalent cysteine modification applied to peptides, proteins and hydrogels

Léa N. C. Rochet,  Calise Bahou,  Jonathan P. Wojciechowski,   Ilias Koutsopetras,   Phyllida Britton,   Richard J. Spears, ORCID logo a   Ioanna A. Thanasi,   Baihao Shao,   Lisha Zhong,   Dejan-Krešimir Bučar,    Abil E. Aliev,   Michael J. Porter,   Molly M. Stevens,  James R. Baker, and  Vijay Chudasama

Chem. Sci. 2023

https://doi.org/10.1039/D3SC04976K

Reversible cysteine modification has been found to be a useful tool for a plethora of applications such as selective enzymatic inhibition, activity-based protein profiling and/or cargo release from a protein or a material. However, only a limited number of reagents display reliable dynamic/reversible thiol modification and, in most cases, many of these reagents suffer from issues of stability, a lack of modularity and/or poor rate tunability. In this work, we demonstrate the potential of pyridazinediones as novel reversible and tuneable covalent cysteine modifiers. We show that the electrophilicity of pyridazinediones correlates to the rates of the Michael addition and retro-Michael deconjugation reactions, demonstrating that pyridazinediones provide an enticing platform for readily tuneable and reversible thiol addition/release. We explore the regioselectivity of the novel reaction and unveil the reason for the fundamental increased reactivity of aryl bearing pyridazinediones by using DFT calculations and corroborating findings with SCXRD. We also applied this fundamental discovery to making more rapid disulfide rebridging agents in related work. We finally provide the groundwork for potential applications in various areas with exemplification using readily functionalised “clickable” pyridazinediones on clinically relevant cysteine and disulfide conjugated proteins, as well as on a hydrogel material.

Friday, November 3, 2023

Offsetting Low-Affinity Carbohydrate Binding with Covalency to Engage Sugar-Specific Proteins for Tumor-Immune Proximity Induction

 Benjamin P. M. Lake and Anthony F. Rullo

ACS Central Science 2023
DOI: 10.1021/acscentsci.3c01052

Carbohydrate-binding receptors are often used by the innate immune system to potentiate inflammation, target endocytosis/destruction, and adaptive immunity (e.g., CD206, DC-SIGN, MBL, and anticarbohydrate antibodies). To access this class of receptors for cancer immunotherapy, a growing repertoire of bifunctional proximity-inducing therapeutics use high-avidity multivalent carbohydrate binding domains to offset the intrinsically low affinity associated with monomeric carbohydrate–protein binding interactions (Kd ≈ 10–3–10–6 M). For applications aimed at recruiting anticarbohydrate antibodies to tumor cells, large synthetic scaffolds are used that contain both a tumor-binding domain (TBD) and a multivalent antibody-binding domain (ABD) comprising multiple l-rhamnose monosaccharides. This allows for stable bridging between tumor cells and antibodies, which activates tumoricidal immune function. Problematically, such multivalent macromolecules can face limitations including synthetic and/or structural complexity and the potential for off-target immune engagement. We envisioned that small bifunctional “proximity-inducing” molecules containing a low-affinity monovalent ABD could efficiently engage carbohydrate-binding receptors for tumor-immune proximity by coupling weak binding with covalent engagement. Typical covalent drugs and electrophilic chimeras use high-affinity ligands to promote the fast covalent engagement of target proteins (i.e., large kinact/KI), driven by a favorably small KI for binding. We hypothesized the much less favorable KI associated with carbohydrate–protein binding interactions can be offset by a favorably large kinact for the covalent labeling step. In the current study, we test this hypothesis in the context of a model system that uses rhamnose-specific antibodies to induce tumor-immune proximity and tumoricidal function. We discovered that synthetic chimeric molecules capable of preorganizing an optimal electrophile (i.e., SuFEx vs activated ester) for protein engagement can rapidly covalently engage natural sources of antirhamnose antibody using only a single low-affinity rhamnose monosaccharide ABD. Strikingly, we observe chimeric molecules lacking an electrophile, which can only noncovalently bind the antibody, completely lack tumoricidal function. This is in stark contrast to previous work targeting small molecule hapten and peptide-specific antibodies. Our findings underscore the utility of covalency as a strategy to engage low-affinity carbohydrate-specific proteins for tumor-immune proximity induction.


Thursday, November 2, 2023

Pervasive aggregation and depletion of host and viral proteins in response to cysteine-reactive electrophilic compounds

Ashley R Julio, Flowreen Shikwana, Cindy Truong, Nikolas R Burton, Emil Dominguez, Alexandra Turmon, Jian Cao, Keriann Backus

bioRxiv 2023.10.30.564067; 

doi: https://doi.org/10.1101/2023.10.30.564067

Protein homeostasis is tightly regulated, with damaged or misfolded proteins quickly eliminated by the proteasome and autophagosome pathways. By co-opting these processes, targeted protein degradation technologies enable pharmacological manipulation of protein abundance. Recently, cysteine-reactive molecules have been added to the degrader toolbox, which offer the benefit of unlocking the therapeutic potential of undruggable protein targets. The proteome-wide impact of these molecules remains to be fully understood and given the general reactivity of many classes of cysteine-reactive electrophiles, on- and off-target effects are likely. Using chemical proteomics, we identified a cysteine-reactive small molecule degrader of the SARS-CoV-2 non-structural protein 14 (nsp14), which effects degradation through direct modification of cysteines in both nsp14 and in host chaperones together with activation of global cell stress response pathways. We find that cysteine-reactive electrophiles increase global protein ubiquitylation, trigger proteasome activation, and result in widespread aggregation and depletion of host proteins, including components of the nuclear pore complex. Formation of stress granules was also found to be a remarkably ubiquitous cellular response to nearly all cysteine-reactive compounds and degraders. Collectively, our study sheds light on complexities of covalent target protein degradation and highlights untapped opportunities in manipulating and characterizing proteostasis processes via deciphering the cysteine-centric regulation of stress response pathways.



Wednesday, November 1, 2023

Covalent Degrader of the Oncogenic Transcription Factor β-Catenin

Flor A Gowans, Nafsika Forte, Justin Hatcher, Yangzhi Wang, Belen E Altamirano Poblano, Ingrid E Wertz, Daniel K Nomura

bioRxiv 2023.10.31.565018; 

doi: https://doi.org/10.1101/2023.10.31.565018

β-catenin (CTNNB1) is an oncogenic transcription factor that is important in cell-cell adhesion and transcription of cell proliferation and survival genes that drives the pathogenesis of many different types of cancers. However, direct pharmacological targeting of CTNNB1 has remained challenging deeming this transcription factor as undruggable. Here, we have performed a screen with a library of cysteine-reactive covalent ligands to identify a monovalent degrader EN83 that depletes CTNNB1 in a ubiquitin proteasome dependent manner. We show that EN83 directly and covalently targets CTNNB1 through targeting four distinct cysteines within the armadillo repeat domain (C439, C466, C520, and C619) leading to a destabilization of CTNNB1. Using covalent chemoproteomic approaches, we show that EN83 directly engages CTNNB1 in cells with a moderate degree of selectivity. We further demonstrate that direct covalent targeting of three of these four cysteines (C466, C520, and C619) in cells contributes to CTNNB1 degradation in cells. We also demonstrate that EN83 can be further optimized to yield more potent CTNNB1 binders and degraders. Our results show that chemoproteomic approaches can be used to covalently target and degrade challenging transcription factors like CTNNB1 through a destabilization-mediated degradation.

Discovery of STX-721, a Covalent, Potent, and Highly Mutant-Selective EGFR/HER2 Exon20 Insertion Inhibitor for the Treatment of Non-Small Cell Lung Cancer

Benjamin C. Milgram, Deanna R. Borrelli, Natasja Brooijmans, Jack A. Henderson, Brendan J. Hilbert, Michael R. Huff, Takahiro Ito, Erica L. ...