Xiaofei Chen, Hanzhi Wu, Chung-Min Park, Thomas H. Poole, Gizem Keceli, Nelmi O. Devarie Baez, Allen W. Tsang, W. Todd Lowther, Leslie B. Poole, S. Bruce King, Ming Xian, and Cristina M. Furdui
ACS Chem. Biol., 2017
DOI: 10.1021/acschembio.7b00444
The selective reaction of chemical reagents with reduced protein thiols is critical to biological research. This reaction is utilized to prevent crosslinking of cysteine-containing peptides in common proteomics workflows and is applied widely in discovery and targeted redox investigations of the mechanisms underlying physiological and pathological processes. However, known and commonly used thiol blocking reagents like iodoacetamide, N-ethylmaleimide and others were found to cross-react with oxidized protein sulfenic acids (-SOH) introducing significant errors in studies employing these reagents. We have investigated and are reporting here a new heteroaromatic alkylsulfone, 4-(5-Methanesulfonyl-[1,2,3,4]tetrazol-1-yl)-phenol (MSTP), as selective and highly reactive -SH blocking reagent compatible with biological applications.
A blog highlighting recent publications in the area of covalent modification of proteins, particularly relating to covalent-modifier drugs. @CovalentMod on Twitter, @covalentmod@mstdn.science on Mastodon, and @covalentmod.bsky.social on BlueSky
Discovery of STX-721, a Covalent, Potent, and Highly Mutant-Selective EGFR/HER2 Exon20 Insertion Inhibitor for the Treatment of Non-Small Cell Lung Cancer
Benjamin C. Milgram, Deanna R. Borrelli, Natasja Brooijmans, Jack A. Henderson, Brendan J. Hilbert, Michael R. Huff, Takahiro Ito, Erica L. ...
-
Linqi Cheng Yixian Wang, Yiming Guo, Sophie S. Zhang Han Xiao C ell Chemical Biology, 2024 Volume 31, 3, 428 - 445 https://doi.org/10.10...
-
Mariko Takahashi, Harrison B. Chong,Siwen Zhang, Tzu-Yi Yang,Matthew J. Lazarov,Stefan Harry,Michelle Maynard, Brendan Hilbert,Ryan D. White...
-
Özge Ünsal, Z. Selin Bacaksiz, Vladislav Khamraev, Vittorio Montanari, Martin Beinborn, and Krishna Kumar ACS Chemical Biology 2024 DOI: ...