Herschel Mukherjee, Neil P Grimster
Current Opinion in Chemical Biology 2018, 44, 30–38
doi: 10.1016/j.cbpa.2018.05.011
Over the past decade targeted covalent inhibitors have undergone a renaissance due to the clinical validation and regulatory approval of several small molecule therapeutics that are designed to irreversibly modify their target protein. Invariably, these compounds rely on the serendipitous placement of a cysteine residue proximal to the small molecule binding site; while this strategy has afforded numerous successes, it necessarily limits the number of proteins that can be targeted by this approach. This drawback has led several research groups to develop novel methodologies that target non-cysteine residues for covalent modification. Herein, we survey the current literature of warheads that covalently modify non-cysteine amino acids in proteins.
A blog highlighting recent publications in the area of covalent modification of proteins, particularly relating to covalent-modifier drugs. @CovalentMod on Twitter, @covalentmod@mstdn.science on Mastodon, and @covalentmod.bsky.social on BlueSky
A Covalent Self-Reporting Peptide Degrader Enables Real-Time Monitoring of Targeted Protein Degradation In Vivo
Wei Zhang, Lizhen Yuan, Rui Liu, Yanbo Jing, Shijun Lin, Hao Fang, Yuxuan Li, Xiaohui Zhang, Jun Dai, Tao Liu, Fan Xia, and Xiaoding Lou Jou...
-
DOI Ansgar Oberheide, Maxime van den Oetelaar, Jakob Scheele, Jan Borggräfe, Semmy Engelen, Michael Sattler, Christian Ottmann, ...
-
Design, synthesis and biological evaluation of the activity-based probes for FGFR covalent inhibitorDandan Zhu, Zijian Zheng, Huixin Huang, Xiaojuan Chen, Shuhong Zhang, Zhuchu Chen, Ting Liu, Guangyu Xu, Ying Fu, Yongheng Chen, European Jo...
-
Yoav Shamir, Nir London bioRxiv 2025.03.19.642201 doi: https://doi.org/10.1101/2025.03.19.642201 Recent years have seen an explosion in the...