Med. Chem. Commun., 2018
DOI: 10.1039/C8MD00566D
Vinyl sulfonamides are valuable electrophiles for targeted protein modification and inhibition. We describe a novel approach to the synthesis of terminal vinyl sulfonamides which uses mild oxidative conditions to induce elimination of an α-selenoether masking group. The method complements traditional synthetic approaches and typically yields vinyl sulfonamides in high purity after aqueous work-up without requiring column chromatography of the final electrophilic product. The methodology is applied to the synthesis of covalent fragments for use in irreversible protein tethering and crucially enables the attachment of diverse fragments to the vinyl sulfonamide warhead via a chemical linker. Using thymidylate synthase as a model system, ethylene glycol is identified as a effective linker for irreversible protein tethering.
A blog highlighting recent publications in the area of covalent modification of proteins, particularly relating to covalent-modifier drugs. @CovalentMod on Twitter, @covalentmod@mstdn.science on Mastodon, and @covalentmod.bsky.social on BlueSky
Covalent Probes Reveal Small-Molecule Binding Pockets in Structured RNA and Enable Bioactive Compound Design
Sandra Kovachka, Jielei Wang, Amirhossein Taghavi, Yilin Jia, Taro Asaba, Karen C. Wolff, Mason Martin, Xueyi Yang, Samantha M. Meyer, Sabin...
-
Design, synthesis and biological evaluation of the activity-based probes for FGFR covalent inhibitorDandan Zhu, Zijian Zheng, Huixin Huang, Xiaojuan Chen, Shuhong Zhang, Zhuchu Chen, Ting Liu, Guangyu Xu, Ying Fu, Yongheng Chen, European Jo...
-
DOI Ansgar Oberheide, Maxime van den Oetelaar, Jakob Scheele, Jan Borggräfe, Semmy Engelen, Michael Sattler, Christian Ottmann, ...
-
Nafizul Haque Kazi, Nikolas Klink, Kai Gallant, Gian-Marvin Kipka & Malte Gersch Nat Struct Mol Biol , 2025 https://doi.org/10.1038/s415...