Thursday, March 19, 2020

Small-molecule covalent bond formation at tyrosine creates a binding site and inhibits activation of Ral GTPases

Khuchtumur Bum-Erdene, Degang Liu, Giovanni Gonzalez-Gutierrez, Mona K. Ghozayel, David Xu, Samy O. Meroueh

Proceedings of the National Academy of Science, 2020, 201913654;
DOI: 10.1073/pnas.1913654117

Ral (Ras-like) GTPases are directly activated by oncogenic Ras GTPases. Mutant K-Ras (G12C) has enabled the development of covalent K-Ras inhibitors currently in clinical trials. However, Ral, and the overwhelming majority of mutant oncogenic K-Ras, are devoid of a druggable pocket and lack an accessible cysteine for the development of a covalent inhibitor. Here, we report that covalent bond formation by an aryl sulfonyl fluoride electrophile at a tyrosine residue (Tyr-82) inhibits guanine exchange factor Rgl2-mediated nucleotide exchange of Ral GTPase. A high-resolution 1.18-Å X-ray cocrystal structure shows that the compound binds to a well-defined binding site in RalA as a result of a switch II loop conformational change. The structure, along with additional high-resolution crystal structures of several analogs in complex with RalA, confirm the importance of key hydrogen bond anchors between compound sulfone oxygen atoms and Ral backbone nitrogen atoms. Our discovery of a pocket with features found on known druggable sites and covalent modification of a bystander tyrosine residue present in Ral and Ras GTPases provide a strategy that could lead to therapeutic agent targeting oncogenic Ras mutants that are devoid of a cysteine nucleophile.



Structural Basis for Substrate Binding, Catalysis and Inhibition of Breast Cancer Target Mitochondrial Creatine Kinase by Covalent Inhibitor via Cryo-EM

Merve Demir,*, Laura Koepping, Ya Li, Lynn Fujimoto, Andrey Bobkov, Jianhua Zhao,  Taro Hitosugi, Eduard Sergienko Structure, 2024 https://d...