Bingqi Tong, Jessica N. Spradlin, Luiz F.T. Novaes, Erika Zhang, Xirui Hu Malte Moeller,
Scott M. Brittain, Lynn M. McGregor, Jeffrey M. McKenna, John A. Tallarico, Markus Schirle,
Thomas J. Maimone, and Daniel K. Nomura
BioRXiv, 2020
doi: https://doi.org/10.1101/2020.04.02.022541
Targeted protein degradation (TPD) and proteolysis-targeting chimeras (PROTACs) have arisen as powerful therapeutic modalities for degrading specific protein targets in a proteasome-dependent manner. However, a major limitation to broader TPD applications is the lack of E3 ligase recruiters. Recently, we discovered the natural product nimbolide as a covalent ligand for the E3 ligase RNF114. When linked to the BET family inhibitor JQ1, the resulting heterobifunctional PROTAC molecule was capable of selectively degrading BRD4 in cancer cells. Here, we show the broader utility of nimbolide as an E3 ligase recruiter for TPD applications. We demonstrate that a PROTAC linking nimbolide to the kinase and BCR-ABL fusion oncogene inhibitor dasatinib, BT1, selectively degrades BCR-ABL over c-ABL in leukemia cancer cells, compared to previously reported cereblon or VHL-recruiting BCR-ABL degraders that show opposite selectivity or in some cases inactivity. Further contrasting from cereblon or VHL-recruiting degradation, we show that BT1 treatment not only leads to BCR-ABL degradation, but also stabilizes the endogenous RNF114 substrate and tumor suppressor substrate p21. This leads to additional anti-proliferative effects in leukemia cancer cells beyond those observed with cereblon or VHL-recruiting BCR-ABL PROTACs. Thus, we further establish nimbolide as an additional general E3 ligase recruiter for PROTACs with unique additional benefits for oncology applications. We also further demonstrate the importance of expanding upon the arsenal of E3 ligase recruiters, as such molecules confer differing and unpredictable selectivity for the degradation of neo-substrate proteins.
A blog highlighting recent publications in the area of covalent modification of proteins, particularly relating to covalent-modifier drugs. @CovalentMod on Twitter, @covalentmod@mstdn.science on Mastodon, and @covalentmod.bsky.social on BlueSky
Mutant-selective AKT inhibition through lysine targeting and neo-zinc chelation
Gregory B. Craven, Hang Chu, Jessica D. Sun, Jordan D. Carelli, Brittany Coyne, Hao Chen, Ying Chen, Xiaolei Ma, Subhamoy Das, Wayne Kong, A...
-
Linqi Cheng Yixian Wang, Yiming Guo, Sophie S. Zhang Han Xiao C ell Chemical Biology, 2024 Volume 31, 3, 428 - 445 https://doi.org/10.10...
-
Nathalie M. Grob, Clint Remarcik, Simon L. Rössler, Jeffrey Y. K. Wong, John C. K. Wang, Jason Tao, Corey L. Smith, Andrei Loas, Stephen L. ...
-
Guanghui Tang , Wei Wang , Chengjun Zhu , Huisi Huang , Peng Chen , Xuan Wang , Manyi Xu , Jie Sun , Chong-Jing Zhang , Qicai Xiao ...