Tuesday, December 15, 2020

Proton-Coupled Conformational Activation of SARS Coronavirus Main Proteases and Opportunity for Designing Small-Molecule Broad-Spectrum Targeted Covalent Inhibitors

Neha Verma, Jack A. Henderson, and Jana Shen

J. Am. Chem. Soc., 2020

https://pubs.acs.org/doi/full/10.1021/jacs.0c10770

The SARS coronavirus 2 (SARS-CoV-2) main protease (Mpro) is an attractive broad-spectrum antiviral drug target. Despite the enormous progress in structure elucidation, the Mpro’s structure–function relationship remains poorly understood. Recently, a peptidomimetic inhibitor has entered clinical trial; however, small-molecule orally available antiviral drugs have yet to be developed. Intrigued by a long-standing controversy regarding the existence of an inactive state, we explored the proton-coupled dynamics of the Mpros of SARS-CoV-2 and the closely related SARS-CoV using a newly developed continuous constant pH molecular dynamics (MD) method and microsecond fixed-charge all-atom MD simulations. Our data supports a general base mechanism for Mpro’s proteolytic function. The simulations revealed that protonation of His172 alters a conserved interaction network that upholds the oxyanion loop, leading to a partial collapse of the conserved S1 pocket, consistent with the first and controversial crystal structure of SARS-CoV Mpro determined at pH 6. Interestingly, a natural flavonoid binds SARS-CoV-2 Mpro in the close proximity to a conserved cysteine (Cys44), which is hyper-reactive according to the CpHMD titration. This finding offers an exciting new opportunity for small-molecule targeted covalent inhibitor design. Our work represents a first step toward the mechanistic understanding of the proton-coupled structure–dynamics–function relationship of CoV Mpros; the proposed strategy of designing small-molecule covalent inhibitors may help accelerate the development of orally available broad-spectrum antiviral drugs to stop the current pandemic and prevent future outbreaks.


Redirecting the pioneering function of FOXA1 with covalent small molecules

Sang Joon Won, Yuxiang Zhang, Christopher J. Reinhardt,Lauren M. Hargis, Nicole S. MacRae,Kristen E. DeMeester,Evert Njomen,Jarrett R. Remsb...