Friday, March 19, 2021

Reimagining Druggability Using Chemoproteomic Platforms [@DanNomura]

Jessica N. Spradlin, Erika Zhang, and Daniel K. Nomura

Accounts of Chemical Research 2021

DOI: 10.1021/acs.accounts.1c00065

One of the biggest bottlenecks in modern drug discovery efforts is in tackling the undruggable proteome. Currently, over 85% of the proteome is still considered undruggable because most proteins lack well-defined binding pockets that can be functionally targeted with small molecules. Tackling the undruggable proteome necessitates innovative approaches for ligand discovery against undruggable proteins as well as the development of new therapeutic modalities to functionally manipulate proteins of interest. Chemoproteomic platforms, in particular activity-based protein profiling (ABPP), have arisen to tackle the undruggable proteome by using reactivity-based chemical probes and advanced quantitative mass spectrometry-based proteomic approaches to enable the discovery of “ligandable hotspots” or proteome-wide sites that can be targeted with small-molecule ligands. These sites can subsequently be pharmacologically targeted with covalent ligands to rapidly discover functional or nonfunctional binders against therapeutic proteins of interest. Chemoproteomic approaches have also revealed unique insights into ligandability such as the discovery of unique allosteric sites or intrinsically disordered regions of proteins that can be pharmacologically and selectively targeted for biological modulation and therapeutic benefit. Chemoproteomic platforms have also expanded the scope of emerging therapeutic modalities for targeted protein degradation and proteolysis-targeting chimeras (PROTACs) through the discovery of several new covalent E3 ligase recruiters. Looking into the future, chemoproteomic approaches will unquestionably have a major impact in further expansion of existing efforts toward proteome-wide ligandability mapping, targeted ligand discovery efforts against high-value undruggable therapeutic targets, further expansion of the scope of targeted protein degradation platforms, the discovery of new molecular glue scaffolds that enable unique modulation of protein function, and perhaps most excitingly the development of next-generation small-molecule induced-proximity-based therapeutic modalities that go beyond degradation. Exciting days lie ahead in this field as chemical biology becomes an increasingly major driver in drug discovery, and chemoproteomic approaches are sure to be a mainstay in developing next-generation therapeutics.



N-Acyl-N-alkyl/aryl Sulfonamide Chemistry Assisted by Proximity for Modification and Covalent Inhibition of Endogenous Proteins in Living Systems

Tomonori Tamura and Itaru Hamachi Accounts of Chemical Research 2025 58 (1), 87-100 DOI: 10.1021/acs.accounts.4c00628 Selective chemical mo...