Thursday, September 30, 2021

Dichloro Butenediamides as Irreversible Site-Selective Protein Conjugation Reagent

Dr. Victor Laserna, Dr. Daniel Abegg, Cláudia F. Afonso, Dr. Esther M. Martin, Dr. Alexander Adibekian, Dr. Peter Ravn, Dr. Francisco Corzana, Dr. Gonçalo J. L. Bernardes

Angew. Chem. Int. Ed. 2021

https://doi.org/10.1002/anie.202108791

We describe maleic-acid derivatives as robust cysteine-selective reagents for protein labelling with comparable kinetics and superior stability relative to maleimides. Diamide and amido-ester derivatives proved to be efficient protein-labelling species with a common mechanism in which a spontaneous cyclization occurs upon addition to cysteine. Introduction of chlorine atoms in their structures triggers ring hydrolysis or further conjugation with adjacent residues, which results in conjugates that are completely resistant to retro-Michael reactions in the presence of biological thiols and human plasma. By controlling the microenvironment of the reactive site, we can control selectivity towards the hydrolytic pathway, forming homogeneous conjugates. The method is applicable to several scaffolds and enables conjugation of different payloads. The synthetic accessibility of these reagents and the mild conditions required for fast and complete conjugation together with the superior stability of the conjugates make this strategy an important alternative to maleimides in bioconjugation.



Identification of a covalent NEK7 inhibitor to alleviate NLRP3 inflammasome-driven metainflammation

Jin, X., Yang, Y., Liu, D.  et al.   Cell Commun Signal   22 , 565 (2024).  https://doi.org/10.1186/s12964-024-01919-w Aberrant activation o...