Monday, October 18, 2021

Identification of covalent inhibitors that disrupt M. tuberculosis growth by targeting multiple serine hydrolases involved in lipid metabolism

Brett M. Babin, Laura J. Keller, Yishay Pinto, Veronica L. Li, Andrew S. Eneim, Summer E. Vance, Stephanie M. Terrell, Ami S. Bhatt, Jonathan Z. Long, Matthew Bogyo

Cell Chemical Biology, 2021

https://doi.org/10.1016/j.chembiol.2021.08.013

The increasing incidence of antibiotic-resistant Mycobacterium tuberculosis infections is a global health threat necessitating the development of new antibiotics. Serine hydrolases (SHs) are a promising class of targets because of their importance for the synthesis of the mycobacterial cell envelope. We screen a library of small molecules containing serine-reactive electrophiles and identify narrow-spectrum inhibitors of M. tuberculosis growth. Using these lead molecules, we perform competitive activity-based protein profiling and identify multiple SH targets, including enzymes with uncharacterized functions. Lipidomic analyses of compound-treated cultures reveal an accumulation of free lipids and a substantial decrease in lipooligosaccharides, linking SH inhibition to defects in cell envelope biogenesis. Mutant analysis reveals a path to resistance via the synthesis of mycocerates, but not through mutations to SH targets. Our results suggest that simultaneous inhibition of multiple SH enzymes is likely to be an effective therapeutic strategy for the treatment of M. tuberculosis infections.



Mutant-selective AKT inhibition through lysine targeting and neo-zinc chelation

Gregory B. Craven, Hang Chu, Jessica D. Sun, Jordan D. Carelli, Brittany Coyne, Hao Chen, Ying Chen, Xiaolei Ma, Subhamoy Das, Wayne Kong, A...