Thursday, November 3, 2022

Discovery of JNJ-64264681: A Potent and Selective Covalent Inhibitor of Bruton’s Tyrosine Kinase

Mark S. Tichenor, John J. M. Wiener, Navin L. Rao, Genesis M. Bacani, Jianmei Wei, Charlotte Pooley Deckhut, J. Kent Barbay, Kevin D. Kreutter, Leon Chang, Kathleen W. Clancy, Heather E. Murrey, Weixue Wang, Kay Ahn, Michael Huber, Elizabeth Rex, Kevin J. Coe, Jiejun Wu, Haopeng Rui, Kia Sepassi, Marcello Gaudiano, Mariette Bekkers, Ivo Cornelissen, Kathryn Packman, Mark Seierstad, Christos Xiouras, Scott D. Bembenek, Richard Alexander, Cynthia Milligan, Sriram Balasubramanian, Alec D. Lebsack, Jennifer D. Venable, Ulrike Philippar, James P. Edwards, and Gavin Hirst

Journal of Medicinal Chemistry 2022

DOI: 10.1021/acs.jmedchem.2c01026

Bruton’s tyrosine kinase (BTK) is a Tec family kinase that plays an essential role in B-cell receptor (BCR) signaling as well as Fcγ receptor signaling in leukocytes. Pharmacological inhibition of BTK has been shown to be effective in treating hematological malignancies and is hypothesized to provide an effective strategy for the treatment of autoimmune diseases such as rheumatoid arthritis and systemic lupus erythematosus. We report the discovery and preclinical properties of JNJ-64264681 (13), a covalent, irreversible BTK inhibitor with potent whole blood activity and exceptional kinome selectivity. JNJ-64264681 demonstrated excellent oral efficacy in both cancer and autoimmune models with sustained in vivo target coverage amenable to once daily dosing and has advanced into human clinical studies to investigate safety and pharmacokinetics.

Selective Protein (Post-)modifications through Dynamic Covalent Chemistry: Self-activated SNAr Reactions

Ferran Esteve, Jean-Louis Schmitt, Sergii Kolodych, Oleksandr Koniev, and Jean-Marie Lehn Journal of the American Chemical Society 2025 DOI...