Tuesday, December 13, 2022

Efficient Ligand Discovery Using Sulfur(VI) Fluoride Reactive Fragments [@arronaatkar]

Aatkar, A.; Vuorinen, A.; Longfield, O.; Gilbert, K.; Peltier-Heap, R.; Wagner, C.; Zappacosta, F.; Rittinger, K.; Chung, C.-wa; House, D.; Tomkinson, N.; Bush, J. ChemRxiv 2022.

https://doi.org/10.26434/chemrxiv-2022-6mt7k

Sulfur(VI) fluorides (SFs) have emerged as valuable electrophiles for the design of 'beyond cysteine' covalent inhibitors, and offer potential for expansion of the liganded proteome. Since SFs target a broad range of nucleophilic amino acids, they deliver an approach for the covalent modification of proteins without requirement for a proximal cysteine residue. Further to this, libraries of reactive fragments present an innovative approach for the discovery of ligands and tools for proteins of interest by leveraging a breadth of mass spectrometry analytical approaches. Herein, we report a screening approach that exploits the unique properties of SFs for this purpose. Libraries of SF-containing reactive fragments were synthesised, and a direct-to-biology workflow was taken to efficiently identify hit compounds for CAII and BCL6. The most promising hits were further characterised to establish the site(s) of covalent modification, modification kinetics, and target engagement in cells. Crystallography was used to gain a detailed molecular understanding of how these reactive fragments bind to their target. It is anticipated that this screening protocol can be used for the accelerated discovery of ‘beyond cysteine’ covalent inhibitors.



Lysine-Targeted Covalent Inhibitors of PI3Kδ Synthesis and Screening by In Situ Interaction Upgradation

Bo Yuan, Yifan Feng, Mengyan Ma, Weiming Duan, Yujie Wu, Jiaxin Liu, Hong-Yi Zhao, Zhe Yang, San-Qi Zhang, and Minhang Xin Journal of Medici...