Leonard Barasa, Sauradip Chaudhuri, Jeffrey Y. Zhou, Zhaozhao Jiang, Shruti Choudhary, Robert Madison Green, Elenore Wiggin, Michael Cameron, Fiachra Humphries, Katherine A. Fitzgerald, and Paul R. Thompson
Journal of the American Chemical Society 2023
DOI: 10.1021/jacs.3c03637
The cGMP-AMP Synthase (cGAS)-Stimulator of Interferon Genes (STING) pathway plays a critical role in sensing dsDNA localized to the cytosol, resulting in the activation of a robust inflammatory response. While cGAS-STING signaling is essential for antiviral immunity, aberrant STING activation is observed in amyotrophic lateral sclerosis (ALS), lupus, and autoinflammatory diseases such as Aicardi-Goutières syndrome (AGS) and STING associated vasculopathy with onset in infancy (SAVI). Significant efforts have therefore focused on the development of STING inhibitors. In a concurrent submission, we reported that BB-Cl-amidine inhibits STING-dependent signaling in the nanomolar range, both in vitro and in vivo. Considering this discovery, we sought to generate analogs with higher potency and proteome-wide selectivity. Herein, we report the development of LB244, which displays nanomolar potency and inhibits STING signaling with markedly enhanced proteome-wide selectivity. Moreover, LB244 mirrored the efficacy of BB-Cl-amidine in vivo. In summary, our data identify novel chemical entities that inhibit STING signaling and provide a scaffold for the development of therapeutics for treating STING-dependent inflammatory diseases.