Saturday, March 23, 2024

Discovery of a Covalent Inhibitor Selectively Targeting the Autophosphorylation Site of c-Src Kinase

Huimin Zhang, Dounan Xu, Hongchan Huang, Hao Jiang, Linghao Hu, Liping Liu, Ge Sun, Jing Gao, Yuanqing Li, Cuicui Xia, Shijie Chen, Hu Zhou, Xiangqian Kong, Mingliang Wang, and Cheng Luo

ACS Chemical Biology 2024
DOI: 10.1021/acschembio.4c00048

Nonreceptor tyrosine kinase c-Src plays a crucial role in cell signaling and contributes to tumor progression. However, the development of selective c-Src inhibitors turns out to be challenging. In our previous study, we performed posttranslational modification-inspired drug design (PTMI-DD) to provide a plausible way for designing selective kinase inhibitors. In this study, after identifying a unique pocket comprising a less conserved cysteine and an autophosphorylation site in c-Src as well as a promiscuous covalent inhibitor, chemical optimization was performed to obtain (R)-LW-Srci-8 with nearly 75-fold improved potency (IC50 = 35.83 ± 7.21 nM). Crystallographic studies revealed the critical C–F···C═O interactions that may contribute to tight binding. The kinact and Ki values validated the improved binding affinity and decreased warhead reactivity of (R)-LW-Srci-8 for c-Src. Notably, in vitro tyrosine kinase profiling and cellular activity-based protein profiling (ABPP) cooperatively indicated a specific inhibition of c-Src by (R)-LW-Srci-8. Intriguingly, (R)-LW-Srci-8 preferentially binds to inactive c-Src with unphosphorylated Y419 both in vitro and in cells, subsequently disrupting the autophosphorylation. Collectively, our study demonstrated the feasibility of developing selective kinase inhibitors by cotargeting a nucleophilic residue and a posttranslational modification site and providing a chemical probe for c-Src functional studies.


Vivek Kumar, Jiyun Zhu, Bala C. Chenna, Zoe A. Hoffpauir, Andrew Rademacher, Ashley M. Rogers, Chien-Te Tseng, Aleksandra Drelich, Sharfa Fa...