Monday, June 24, 2024

Electrophilic proximity-inducing synthetic adapters enhance universal T cell function by covalently enforcing immune receptor signalling

Nickolas J. Serniuck, Eden Kapcan, Duane Moogk, Allyson E. Moore, Benjamin P.M. Lake, Galina Denisova, Joanne A. Hammill, Jonathan L. Bramson, Anthony F. Rullo,

Molecular Therapy: Oncology2024, 200842

https://doi.org/10.1016/j.omton.2024.200842

Proximity-induction of cell-cell interactions via small molecules represents an emerging field in basic and translational sciences. Covalent anchoring of these small molecules represents a useful chemical strategy to enforce proximity, however it remains largely unexplored for driving cell-cell interactions. In immunotherapeutic applications, bifunctional small molecules are attractive tools for inducing proximity between immune effector cells like T cells and tumor cells to induce tumoricidal function. We describe a two-component system comprised of electrophilic bifunctional small molecules and paired synthetic antigen receptors (SARs) that elicit T cell activation. The molecules, termed covalent immune recruiters (CIRs), were designed to affinity label and covalently engage SARs. We evaluated the utility of CIRs to direct anti-tumor function of human T cells engineered with three biologically distinct classes of SAR. Irrespective of the electrophilic chemistry, tumor targeting moiety, or SAR design, CIRs outperformed equivalent non-covalent bifunctional adapters, establishing a key role for covalency in maximizing functionality. We determined that covalent linkage enforced early T cell activation events in a manner that was dependent upon each SARs biology and signalling threshold. These results provide a platform to optimize universal SAR T cell functionality and more broadly reveal new insights into how covalent adapters modulate cell-cell proximity-induction.




Identification of Novel Organo-Se BTSA-Based Derivatives as Potent, Reversible, and Selective PPARγ Covalent Modulators for Antidiabetic Drug DiscoveryClick to copy article link

Fangyuan Chen, Qingmei Liu, Lei Ma, Cuishi Yan, Haiman Zhang, Zhi Zhou, and Wei Yi Journal of Medicinal Chemistry 2025 68 (1), 819-831 DOI...