Monday, August 26, 2024

Aminomethyl Salicylaldehydes Lock onto a Surface Lysine by Forming an Extended Intramolecular Hydrogen Bond Network

Jacqueline Weaver, Gregory B. Craven, Linh Tram, Hao Chen, and Jack Taunton
Journal of the American Chemical Society 2024

DOI: 10.1021/jacs.4c04314

The development of electrophilic ligands that rapidly modify specific lysine residues remains a major challenge. Salicylaldehyde-based inhibitors have been reported to form stable imine adducts with the catalytic lysine of protein kinases. However, the targeted lysine in these examples is buried in a hydrophobic environment. A key unanswered question is whether this strategy can be applied to a lysine on the surface of a protein, where rapid hydrolysis of the resulting salicylaldimine is more likely. Here, we describe a series of aminomethyl-substituted salicylaldehydes that target a fully solvated lysine on the surface of the ATPase domain of Hsp90. By systematically varying the orientation of the salicylaldehyde, we discovered ligands with long residence times, the best of which engages Hsp90 in a quasi-irreversible manner. Crystallographic analysis revealed a daisy-chain network of intramolecular hydrogen bonds in which the salicylaldimine is locked into position by the adjacent piperidine linker. This study highlights the potential of aminomethyl salicylaldehydes to generate conformationally stabilized, hydrolysis-resistant imines, even when the targeted lysine is far from the ligand binding site and is exposed to bulk solvent.



Covalent Plant Natural Product that Potentiates Antitumor Immunity

Misao Takemoto, Sara Delghandi, Masahiro Abo, Keiko Yurimoto, Minami Odagi, Vaibhav Pal Singh, Jun Wang, Reiko Nakagawa, Shin-ichi Sato, Yas...