Saturday, October 12, 2024

Identification of a cell-active chikungunya virus nsP2 protease inhibitor using a covalent fragment-based screening approach

Eric M. Merten  and John D. Sears  and Tina M. Leisner  and P. Brian Hardy  and Anirban Ghoshal  and Mohammad Anwar Hossain  and Kesatebrhan Haile Asressu  and Peter J. Brown  and Edwin G. Tse  and Michael A. Stashko  and Kelin Li  and Jacqueline L. Norris-Drouin  and Laura E. Herring  and Angie L. Mordant  and Thomas S. Webb  and Christine A. Mills  and Natalie K. Barker  and Zachary J. Streblow  and Sumera Perveen  and Cheryl H. Arrowsmith  and Rafael Miguez Couñago  and Jamie J. Arnold  and Craig E. Cameron  and Daniel N. Streblow  and Nathaniel J. Moorman  and Mark T. Heise  and Timothy M. Willson  and Konstantin I. Popov  and Kenneth H. Pearce 

Proc. Natl. Acad. Sci. U.S.A. 2024 121 (42) e2409166121

https://doi.org/10.1073/pnas.2409166121

Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that has been responsible for numerous large-scale outbreaks in the last twenty years. Currently, there are no FDA-approved therapeutics for any alphavirus infection. CHIKV nonstructural protein 2 (nsP2), which contains a cysteine protease domain, is essential for viral replication, making it an attractive target for a drug discovery campaign. Here, we optimized a CHIKV nsP2 protease (nsP2pro) biochemical assay for the screening of a 6,120-compound cysteine-directed covalent fragment library. Using a 50% inhibition threshold, we identified 153 hits (2.5% hit rate). In dose–response follow-up, RA-0002034, a covalent fragment that contains a vinyl sulfone warhead, inhibited CHIKV nsP2pro with an IC50 of 58 ± 17 nM, and further analysis with time-dependent inhibition studies yielded a kinact /KI of 6.4 × 103 M−1s−1. LC-MS/MS analysis determined that RA-0002034 covalently modified the catalytic cysteine in a site-specific manner. Additionally, RA-0002034 showed no significant off-target reactivity in proteomic experiments or against a panel of cysteine proteases. In addition to the potent biochemical inhibition of CHIKV nsP2pro activity and exceptional selectivity, RA-0002034 was tested in cellular models of alphavirus infection and effectively inhibited viral replication of both CHIKV and related alphaviruses. This study highlights the identification and characterization of the chemical probe RA-0002034 as a promising hit compound from covalent fragment-based screening for development toward a CHIKV or pan-alphavirus therapeutic.

Identification of a cell-active chikungunya virus nsP2 protease inhibitor using a covalent fragment-based screening approach

Eric M. Merten  and John D. Sears  and Tina M. Leisner  and P. Brian Hardy  and Anirban Ghoshal  and Mohammad Anwar Hossain  and Kesatebrhan...