Wednesday, November 27, 2024

Identification of a covalent NEK7 inhibitor to alleviate NLRP3 inflammasome-driven metainflammation

Jin, X., Yang, Y., Liu, D. et al.

 Cell Commun Signal 22, 565 (2024). 

https://doi.org/10.1186/s12964-024-01919-w

Aberrant activation of NLRP3 inflammasome is associated with a variety of inflammatory diseases. Advances in understanding the molecular mechanisms of NLRP3 inflammasome have revealed that NEK7 is an essential component for its activation, but the development of drugs specifically targeting NEK7 remains challenging. Here we identify rociletinib (ROC), an anticancer drug in phase III clinical trial with high safety profile, as a highly potent and specific small-molecule antagonists of NEK7. Mechanistically, ROC covalent binds to the cysteine 79 of NEK7 through its reactive α, β-unsaturated carbonyl group, thereby inhibiting the interaction between NLRP3 and NEK7, and the subsequent assembly and activation of NLRP3 inflammasome. Furthermore, ROC alleviates the pathological features of metainflammation on the mouse model of type 2 diabetes (T2D). In summary, our results identify ROC as a covalent inhibitor of NEK7 and demonstrates that targeting NEK7 provides a potential and promising strategy for the treatment of NLRP3 inflammasome-driven T2D.

4-Oxo-β-lactams as Covalent Inhibitors of the Mitochondrial Intramembrane Protease PARL

Shanping Ji, Kathrin Bach, Vijay Madhav Miriyala, Jan Dohnálek, Miguel Riopedre-Fernandez, Martin Lepšík, Merel van de Plassche, Roeland Vanhoutte, Marta Barniol-Xicota, Rui Moreira, Kvido Strisovsky, and Steven H. L. Verhelst

ACS Medicinal Chemistry Letters 2024

DOI: 10.1021/acsmedchemlett.4c00384

Rhomboid proteases play a variety of physiological roles, but rhomboid protease inhibitors have been mostly developed for the E. coli model rhomboid GlpG. In this work, we screened different electrophilic scaffolds against the human mitochondrial rhomboid PARL and found 4-oxo-β-lactams as submicromolar inhibitors. Multifaceted computations suggest explanations for the activity at the molecular scale and provide models of covalently bound complexes. Together with the straightforward synthesis of the 4-oxo-β-lactam scaffold, this may pave the way toward selective, nonpeptidic PARL inhibitors.



Monday, November 25, 2024

Lysine-Targeted Covalent Inhibitors of PI3Kδ Synthesis and Screening by In Situ Interaction Upgradation

Bo Yuan, Yifan Feng, Mengyan Ma, Weiming Duan, Yujie Wu, Jiaxin Liu, Hong-Yi Zhao, Zhe Yang, San-Qi Zhang, and Minhang Xin

Journal of Medicinal Chemistry 2024

DOI: 10.1021/acs.jmedchem.4c01284

Targeting the lysine residue of protein kinases to develop covalent inhibitors is an emerging hotspot. Herein, we have reported an approach to develop lysine-targeted covalent inhibitors of PI3Kδ by in situ interaction upgradation of the H-bonding to covalent bonding. Several warhead groups were introduced and screened in situ, leading to lysine-targeted covalent inhibitors bearing aromatic esters with high bioactivity and PI3Kδ selectivity. Compound A11 bearing phenolic ester was finally optimized to show a long duration of action in SU-DHL-6 cells by multiple assays. Docking simulation and further protein mass spectrometry confirmed that A11 bound to PI3Kδ by covalent-bonding interactions with Lys779. Furthermore, A11 exhibited potently antitumor efficacy without obvious toxicity in the SU-DHL-6 and Pfeiffer xenograft mouse models. This study identified A11 to be a much more effective antitumor agent in vitro and in vivo as a lysine-targeted covalent inhibitor, and it also provided a practical approach for the development of lysine-targeted covalent inhibitors.



Saturday, November 23, 2024

Rapid, potent, and persistent covalent chemical probes to deconvolute PI3Kα signaling

Lukas Bissegger,  Theodora A. Constantin,  Erhan Keles,  Luka Raguž,   Isobel Barlow-Busch,  Clara Orbegozo,   Thorsten Schaefer,  Valentina Borlandelli,   Thomas Bohnacker,  Rohitha Sriramaratnam,   Alexander Schäfer,   Matthias Gstaiger,   John E. Burke,   Chiara Borsari O  and  Matthias P. Wymann 

Chem. Sci. 2024

DOI: 10.1039/D4SC05459H

Chemical probes have gained importance in the elucidation of signal transduction in biology. Insufficient selectivity and potency, lack of cellular activity and inappropriate use of chemical probes has major consequences on interpretation of biological results. The catalytic subunit of phosphoinositide 3-kinase α (PI3Kα) is one of the most frequently mutated genes in cancer, but fast-acting, high-quality probes to define PI3Kα's specific function to clearly separate it from other class I PI3K isoforms, are not available. Here, we present a series of novel covalent PI3Kα-targeting probes with optimized intracellular target access and kinetic parameters. On-target TR-FRET and off-target assays provided relevant kinetic parameters (kchemkinact and Ki) to validate our chemical probes. Additional intracellular nanoBRET tracer displacement measurements showed rapid diffusion across the cell membrane and extremely fast target engagement, while investigations of signaling downstream of PI3Kα via protein kinase B (PKB/Akt) and forkhead box O (FOXO) revealed blunted pathway activity in cancer cell lines with constitutively activated PI3Kα lasting for several days. In contrast, persistent PI3Kα inhibition was rapidly bypassed by other class I PI3K isoforms in cells lacking functional phosphatase and tensin homolog (PTEN). Comparing the rapidly-diffusing, fast target-engaging chemical probe 9 to clinical reversible PI3Kα-selective inhibitors alpelisib, inavolisib and 9r, a reversible analogue of 9, revealed 9's superior potency to inhibit growth (up to 600-fold) associated with sustained suppression of PI3Kα signaling in breast cancer cell lines. Finally, using a simple washout protocol, the utility of the highly-selective covalent PI3Kα probe 9 was demonstrated by the quantification of the coupling of insulin, EGF and CXCL12 receptors to distinct PI3K isoforms for signal transduction in response to ligand-dependent activation. Collectively, these findings along with the novel covalent chemical probes against PI3Kα provide insights into isoform-specific functions in cancer cells and highlight opportunities to achieve improved selectivity and long-lasting efficacy. 

Friday, November 22, 2024

Covalent Targeting of Histidine Residues with Aryl Fluorosulfates: Application to Mcl-1 BH3 Mimetics

Giulia Alboreggia, Parima Udompholkul, Emma L. Atienza, Kendall Muzzarelli, Zahra Assar, and Maurizio Pellecchia

Journal of Medicinal Chemistry 2024

DOI: 10.1021/acs.jmedchem.4c01541

Covalent drugs provide pharmacodynamic and pharmacokinetic advantages over reversible agents. However, covalent strategies have been developed mostly to target cysteine (Cys) residues, which are rarely found in binding sites. Among other nucleophilic residues that could be in principle used for the design of covalent drugs, histidine (His) has not been given proper attention despite being in principle an attractive residue to pursue but underexplored. Aryl fluorosulfates, a mild electrophile that is very stable in biological media, have been recently identified as possible electrophiles to react with the side chains of Lys; however, limited studies are available on aryl fluorosulfates’ ability to target His residues. We demonstrate that proper incorporation of an aryl fluorosulfate juxtaposing the electrophile with a His residue can be used to afford rapid optimizations of His-covalent agents. As an application, we report on His-covalent BH3 mimetics targeting His224 of Mcl-1.

Monday, November 18, 2024

Comprehensive Exploration of Isocitrate Dehydrogenase (IDH) Mutations: Tumorigenesis, Drug Discovery, and Covalent Inhibitor Advances

Conghao Gai, Hairong Zeng ,  Haoming Xu, Xiaoyun Chai, Yan Zou, Chunlin Zhuang, Guangbo Ge, Qingjie Zhao 

European Journal of Medicinal Chemistry, 2024

https://doi.org/10.1016/j.ejmech.2024.117041

Isocitrate dehydrogenase (IDH) is an enzyme that catalyses the oxidative decarboxylation of isocitrate, producing α-ketoglutarate (α-KG) relative to the hydroxylation of substrates. However, IDH mutants can further reduce α-KG to 2-hydroxyglutarate (2-HG) which competitively inhibits α-KG dependent enzymes, leading to the downregulation of normal hydroxylation pathways. Good IDH mutant inhibitors can effectively reduce the level of 2-HG and therefore disturb cellular malignant transformation. In this review, we introduce the biological functions of IDH, describe the tumorigenesis mechanisms of IDH variants, and review the structure-based drug discovery of clinical inhibitors during 2012-2024. We also find successful applications of covalent strategy in the development of irreversible IDH inhibitors. Biological screening methods are also collected in this paper, which may help researchers to rapidly construct workflows for drug discovery and development.

Friday, November 15, 2024

Scalable Thiol Reactivity Profiling Identifies Azetidinyl Oxadiazoles as Cysteine-Targeting Electrophiles

Fereshte Ghorbani, Shaochen You, Gennadii A. Grabovyi, Mannkyu Hong, Garrett Lindsey, Arnab K. Chatterjee, and Michael J. Bollong

Journal of the American Chemical Society 2024

DOI: 10.1021/jacs.4c05711

Cysteine reactive groups are a mainstay in the design of covalent drugs and probe molecules, yet only a handful of electrophiles are routinely used to target this amino acid. Here, we report the development of scalable thiol reactivity (STRP), a method which enables the facile interrogation of large chemical libraries for intrinsic reactivity with cysteine. High throughput screening using STRP identified the azetidinyl oxadiazole as a moiety that selectively reacts with cysteine through a ring opening-based mechanism, capable of covalently engaging cysteine residues broadly across the human proteome. We show the utility of this reactive group with the discovery of an azetidinyl oxadiazole containing a small molecule that augments the catalytic activity of the deubiquitinase UCHL1 in vitro and in cells by covalently modifying a cysteine distal to its enzymatic active site. This study adds a novel cysteine targeting group to the electrophilic lexicon and provides robust methodology to rapidly surveil libraries for reactivity with cysteine.

An mRNA Display Approach for Covalent Targeting of a Staphylococcus aureus Virulence Factor

Sijie Wang, Emily C. Woods, Jeyun Jo, Jiyun Zhu, Althea Hansel-Harris, Matthew Holcomb, Nichole J. Pedowitz, Tulsi Upadhyay, John Bennett, Matthias Fellner, Ki Wan Park, Anna Zhang, Tulio A. Valdez, Stefano Forli, Alix I Chan, Christian N. Cunningham, Matthew Bogyo

bioRxiv 2024.11.06.622387; 

doi: https://doi.org/10.1101/2024.11.06.622387

Staphylococcus aureus (S. aureus) is an opportunistic human pathogen that causes over one million deaths around the world each year. We recently identified a family of serine hydrolases termed fluorophosphonate binding hydrolases (Fphs) that play important roles in lipid metabolism and colonization of a host. Because many of these enzymes are only expressed in Staphylococcus bacteria, they are valuable targets for diagnostics and therapeutics. Here we developed and screened highly diverse cyclic peptide libraries using mRNA display with a genetically encoded oxadiazolone (Ox) electrophile that was previously shown to potently and covalently inhibit multiple Fph enzymes. By performing multiple rounds of counter selections with WT and catalytic dead FphB, we were able to tune the selectivity of the resulting selected cyclic peptides containing the Ox residue towards the desired target. From our mRNA display hits, we developed potent and selective fluorescent probes that label the active site of FphB at single digit nanomolar concentrations in live S. aureus bacteria. Taken together, this work demonstrates the potential of using direct genetically encoded electrophiles for mRNA display of covalent binding ligands and identifies potent new probes for FphB that have the potential to be used for diagnostic and therapeutic applications.



Sunday, November 10, 2024

Mutant-selective AKT inhibition through lysine targeting and neo-zinc chelation

Gregory B. Craven, Hang Chu, Jessica D. Sun, Jordan D. Carelli, Brittany Coyne, Hao Chen, Ying Chen, Xiaolei Ma, Subhamoy Das, Wayne Kong, Adam D. Zajdlik, Kin S. Yang, Solomon H. Reisberg, Peter A. Thompson, J. Russell Lipford & Jack Taunton 

Nature, 2024

https://doi.org/10.1038/s41586-024-08176-4

Somatic alterations in the oncogenic kinase AKT1 have been identified in a broad spectrum of solid tumours. The most common AKT1 alteration replaces Glu17 with Lys (E17K) in the regulatory pleckstrin homology domain1, resulting in constitutive membrane localization and activation of oncogenic signalling. In clinical studies, pan-AKT inhibitors have been found to cause dose-limiting hyperglycaemia, which has motivated the search for mutant-selective inhibitors. We exploited the E17K mutation to design allosteric, lysine-targeted salicylaldehyde inhibitors with selectivity for AKT1 (E17K) over wild-type AKT paralogues, a major challenge given the presence of three conserved lysines near the allosteric site. Crystallographic analysis of the covalent inhibitor complex unexpectedly revealed an adventitious tetrahedral zinc ion that coordinates two proximal cysteines in the kinase activation loop while simultaneously engaging the E17K–imine conjugate. The salicylaldimine complex with AKT1 (E17K), but not that with wild-type AKT1, recruits endogenous Zn2+ in cells, resulting in sustained inhibition. A salicylaldehyde-based inhibitor was efficacious in AKT1 (E17K) tumour xenograft models at doses that did not induce hyperglycaemia. Our study demonstrates the potential to achieve exquisite residence-time-based selectivity for AKT1 (E17K) by targeting the mutant lysine together with Zn2+ chelation by the resulting salicylaldimine adduct.

Friday, November 8, 2024

Target Ligand Separation and Identification of Isoforsythiaside as a Histone Lysine-Specific Demethylase 1 Covalent Inhibitor Against Breast Cancer Metastasis

Mengzhen Gu, Xiaoqing Xu, Xiaoping Wang, Yun Wang, Yu Zhao, Xiaoxian Hu, Lu Zhu, Zhenzhong Deng, and Chao Han

Journal of Medicinal Chemistry 2024
DOI: 10.1021/acs.jmedchem.4c02277

Histone lysine-specific demethylase 1 (LSD1) is hyperactive in breast cancer, which is associated with the metastasis of the tumor. Current irreversible LSD1 inhibitors are all synthesized by covalently binding to the flavin adenine dinucleotide cofactor, which often have side effects due to the high affinity for a variety of targets. Here, we identified isoforsythiaside (IFA), a natural phenylpropanoid glycoside isolated from Forsythia suspensa, as a novel covalent inhibitor of LSD1. The target ligand fishing technique and LC–MS/MS analysis identified that IFA could covalently bind to the Ser817 residue of LSD1 by α,β-unsaturated ketone moiety to block the amine oxidase-like domain of LSD1. Moreover, RBMS3/Twist1/MMP2, the downstream signaling pathway of LSD1, was activated after IFA treatment to inhibit the metastasis of MDA-MB-231 cells in vitro and in vivo. This study provided novel molecular templates for development of LSD1 covalence-binding inhibitor and laid a foundation for developing agents against breast carcinoma metastasis for targeting LSD1.


Thursday, November 7, 2024

Covalency in PROTACs: Mechanisms and applications [@RPNowak]

Thomas M. Geiger, Radosław P. Nowak

Annual Reports in Medicinal Chemistry, 2024

https://doi.org/10.1016/bs.armc.2024.10.001

Proteolysis targeting chimeras (PROTACs) are hetero-bifunctional molecules that remove disease-causing proteins through the means of targeted protein degradation (TPD). Since their proof-of-concept over 20 years ago, PROTACs emerged as new modality in drug discovery and chemical biology. Historically, the vast majority of PROTACs use reversible-binding recruiters for both target and E3 ligase. However, in recent years more covalent PROTACs have been developed to harness the advantages of covalency such as unlocking the “undruggable” proteome to expand the repertoire of addressable targets and recruitable E3 ligases. Here, we review recent advances in covalent PROTACs, discuss their distinct mechanism of action and outline the key differences of this approach.


Tuesday, November 5, 2024

A Practical Guide for the Assay-Dependent Characterisation of Irreversible Inhibitors

Lavleen Mader,   Jessica Borean  and  Jeffrey W Keillor

RSC Med. Chem2024 

DOI 10.1039/D4MD00707G

Irreversible targeted covalent inhibitors, in the past regarded as inappropriately reactive and toxic, have seen a recent resurgence in clinical interest. This paradigm shift is attributed to the exploitation of the two-step mechanism, in which a high affinity and selectivity (i.e., low KI) scaffold binds the target and only then does a pendant low intrinsic reactivity warhead react with the target (moderate kinact). This highlights the importance of evaluating inhibitors by deriving both their KI and kinact values. The development of methods to evaluate these inhibitors by accounting for their time-dependent nature has been crucial to the discovery of promising clinical candidates. Herein, we report all the practical kinetic methods available to date to derive kinact and KI values. These methods include direct observation of covalent modification, continuous assay (Kitz & Wilson) evaluation, and discontinuous incubation and pre-incubation time-dependent IC50 assays. We also provide practical guidelines and examples for performing these assays, comparison of their utility, and perspectives for their extended applications. This review aims to provide clarity about the use of these methods for reporting complete inhibitor kinetic profiles, guiding irreversible drug development towards increased target affinity and selectivity, while modulating in-vivo stability and on-target reactivity.

Monday, November 4, 2024

Pan-Transcriptional Enhanced Associated Domain Palmitoylation Pocket Covalent Inhibitor

Jinhyuk Kim, Hadong Kim, Jongwan Kim, Seon Yeon Cho, Sungho Moon, Youngki Yoo, Hanseong Kim, Jin Kwan Kim, Hyejin Jeon, Wan Namkung, Gyoonhee Han, and Kyoung Tai No

Journal of Medicinal Chemistry 2024

DOI: 10.1021/acs.jmedchem.4c01393

In the Hippo signaling pathway, the palmitoylated transcriptional enhanced associated domain (TEAD) protein interacts with the coactivator Yes-associated protein/PDZ-binding motif, leading to transcriptional upregulation of oncogenes such as Ctgf and Cyr61. Consequently, targeting the palmitoylation sites of TEAD has emerged as a promising strategy for treating TEAD-dependent cancers. Compound 1 was identified using a structure-based drug design approach, leveraging the molecular insights gained from the known TEAD palmitoylation site inhibitor, K-975. Optimization of the initial hit compound resulted in the development of compound 3, a covalent pan-TEAD inhibitor characterized by high potency and oral bioavailability.


Saturday, November 2, 2024

Total Synthesis of Tagitinins, Goyazensolide and RelatedFuranoheliangolides and their Covalent Interaction withImportin-5 (IPO5)

W Liu, R Patouret, E Peev, S Barluenga, N Winssinger

Helvetica Chimica Acta, 2024 
https://doi.org/10.1002/hlca.202400122

Herein, we detail an extension of our research on the synthesis of a small library of furanoheliangolides and the characterization of the covalent interaction between goyazensolide and IPO5. Using a build‐couple‐pair strategy, we assembled a small library of germacrene‐type lactones and diversified them into eight groups of structurally different analogues. The germacrene lactones were synthesized using Sonogashira coupling and Barbier‐type macrocyclization, while the furanoheliangolides were further elaborated through gold‐catalyzed transannulation followed by esterification. This synthetic approach enabled the generation of a goyazensolide alkyne‐tagged cellular probe, which was used to identify the selective binding between goyazensolide and the oncoprotein importin‐5 (IPO5). Mass spectrometry analysis of the proteolytic digest from the reaction between the goyazensolide probe and a recombinant IPO5 indicated a covalent engagement at Cys560 of IPO5, which was confirmed by site‐directed mutagenesis.

Friday, November 1, 2024

Slow-Binding and Covalent HDAC Inhibition: A New Paradigm?

Yasir S. Raouf and Carlos Moreno-Yruela

JACS Au2024

DOI: 10.1021/jacsau.4c00828

The dysregulated post-translational modification of proteins is an established hallmark of human disease. Through Zn2+-dependent hydrolysis of acyl-lysine modifications, histone deacetylases (HDACs) are key regulators of disease-implicated signaling pathways and tractable drug targets in the clinic. Early targeting of this family of 11 enzymes (HDAC1–11) afforded a first generation of broadly acting inhibitors with medicinal applications in oncology, specifically in cutaneous and peripheral T-cell lymphomas and in multiple myeloma. However, first-generation HDAC inhibitors are often associated with weak-to-modest patient benefits, dose-limited efficacies, pharmacokinetic liabilities, and recurring clinical toxicities. Alternative inhibitor design to target single enzymes and avoid toxic Zn2+-binding moieties have not overcome these limitations. Instead, recent literature has seen a shift toward noncanonical mechanistic approaches focused on slow-binding and covalent inhibition. Such compounds hold the potential of improving the pharmacokinetic and pharmacodynamic profiles of HDAC inhibitors through the extension of the drug–target residence time. This perspective aims to capture this emerging paradigm and discuss its potential to improve the preclinical/clinical outlook of HDAC inhibitors in the coming years.

Chemoselective Stabilized Triphenylphosphonium Probes for Capturing Reactive Carbonyl Species and Regenerating Covalent Inhibitors with Acrylamide Warheads in Cellulo

  Ai-Lin Chen, Zih-Jheng Lin, Hsiao-Yu Chang, and Tsung-Shing Andrew Wang Journal of the American Chemical Society , 2025 https://pubs.acs.o...