Fangyuan Chen, Qingmei Liu, Lei Ma, Cuishi Yan, Haiman Zhang, Zhi Zhou, and Wei Yi
Journal of Medicinal Chemistry 2025 68 (1), 819-831
DOI: 10.1021/acs.jmedchem.4c02803
Recent studies have identified selective peroxisome proliferator-activated receptor γ (PPARγ) modulators, which synergistically engage in the inhibition mechanism of PPARγ-Ser273 phosphorylation, as a promising approach for developing safer and more effective antidiabetic drugs. Herein, we present the design, synthesis, and evaluation of a new class of organo-Se compounds, namely, benzothiaselenazole-1-oxides (BTSAs), acting as potent, reversible, and selective PPARγ covalent modulators. Notably, 2n, especially (R)-2n, displayed a high binding affinity and superior antidiabetic effects with diminished side effects. This is mainly because it can reversibly form a unique covalent bond with the Cys285 residue in PPARγ-LBD. Further mechanistic investigations revealed that it manifested such desired pharmacological profiles primarily by effectively suppressing PPARγ-Ser273 phosphorylation, enhancing glucose metabolism, and selectively upregulating the expression of insulin-sensitive genes. Collectively, our results suggest that (R)-2n holds promise as a lead compound for treating T2DM and also provides an innovative reversible covalent warhead reference for future covalent drug design.