Tuesday, February 3, 2026

Covalent Protein Inhibitors via Tyrosine and Tryptophan Conjugation with Cyclic Imine Mannich Electrophiles

Dr. Sijie Wang, Dr. Lei Wang, Dr. Marco Hadisurya, Dr. Siavash Shahbazi Nia, Prof. Dr. W. Andy Tao, Prof. Dr. Emily C. Dykhuizen, Prof. Dr. Casey J. Krusemark

Angewandte Chemie e16630

Targeted covalent inhibitors (TCIs) are increasingly popular as drug candidates and chemical probes. Among current TCIs, the chemistry is largely limited to cysteine and lysine side chain reactivity. Here, we investigated the utility of cyclic imine Mannich electrophiles as covalent warheads to target protein tyrosine and tryptophan side chains. We characterized the intrinsic reaction rates of several cyclic imines to tyrosine and other amino acid side chains and validated reactivity using protein affinity labeling of a cyclic imine-modified trimethoprim with tyrosine and tryptophan mutants of E. coli dihydrofolate reductase. To validate the utility of the approach, we appended cyclic imine warheads to a CBX8 chromodomain inhibitor to label a non-conserved tyrosine, which improved both the potency and selectivity of the inhibitor for CBX8 in vitro and in cells. These findings indicate that Mannich electrophiles are promising and robust chemical warheads for tyrosine and tryptophan bioconjugation and development of covalent inhibitors.

Covalent Protein Inhibitors via Tyrosine and Tryptophan Conjugation with Cyclic Imine Mannich Electrophiles

Dr. Sijie Wang, Dr. Lei Wang, Dr. Marco Hadisurya, Dr. Siavash Shahbazi Nia, Prof. Dr. W. Andy Tao, Prof. Dr. Emily C. Dykhuizen, Prof. Dr. ...