Marcus John Curtis Long, Yimon Aye
Cell Chemical Biology
10.1016/j.chembiol.2017.05.023
This Perspective delineates how redox signaling affects the activity of specific enzyme isoforms and how this property may be harnessed for rational drug design. Covalent drugs have resurged in recent years and several reports have extolled the general virtues of developing irreversible inhibitors. Indeed, many modern pharmaceuticals contain electrophilic appendages. Several invoke a warhead that hijacks active-site nucleophiles whereas others take advantage of spectator nucleophilic side chains that do not participate in enzymatic chemistry, but are poised to bind/react with electrophiles. The latest data suggest that innate electrophile sensing—which enables rapid reaction with an endogenous signaling electrophile—is a quintessential resource for the development of covalent drugs. For instance, based on recent work documenting isoform-specific electrophile sensing, isozyme non-specific drugs may be converted to isozyme-specific analogs by hijacking privileged first-responder electrophile-sensing cysteines. Because this approach targets functionally relevant cysteines, we can simultaneously harness previously untapped moonlighting roles of enzymes linked to redox sensing
A blog highlighting recent publications in the area of covalent modification of proteins, particularly relating to covalent-modifier drugs. @CovalentMod on Twitter and @covalentmod@mstdn.science on Mastodon
Chemical Specification of E3 Ubiquitin Ligase Engagement by Cysteine-Reactive Chemistry
Roman C. Sarott, Inchul You, Yen-Der Li, Sean T. Toenjes, Katherine A. Donovan, Pooreum Seo, Martha Ordonez, Woong Sub Byun, Muhammad Murtaz...

-
Jian Ding, Guo Li, Hejun Liu, Lulu Liu, Ying Lin, Jingyan Gao, Guoqiang Zhou, Lingling Shen, Mengxi Zhao, Yanyan Yu, Weihui Guo, Ulrich Homm...
-
Ethan S Toriki, James W Papatzimas, Kaila Nishikawa, Dustin Dovala, Lynn M McGregor, Matthew J Hesse, Jeffrey M McKenna, John A Tallarico, M...
-
Hong, S. ho; Xi, S. Y.; Johns, A. C.; Tang, L. C.; Li, A.; Jovanovic, M.; Shah, N. H. ChemRxiv 2022 . https://doi.org/10.26434/chemrxiv-2...