Nomura D.K., Maimone T.J.
Current Topics in Microbiology and Immunology, 2018
doi: 10.1007/82_2018_121
There are countless natural products that have been isolated from microbes, plants, and other living organisms that have been shown to possess therapeutic activities such as antimicrobial, anticancer, or anti-inflammatory effects. However, developing these bioactive natural products into drugs has remained challenging in part because of their difficulty in isolation, synthesis, mechanistic understanding, and off-target effects. Among the large pool of bioactive natural products lies classes of compounds that contain potential reactive electrophilic centers that can covalently react with nucleophilic amino acid hotspots on proteins and other biological molecules to modulate their biological action. Covalently acting natural products are more amenable to rapid target identification and mapping of specific druggable hotspots within proteins using activity-based protein profiling (ABPP)-based chemoproteomic strategies. In addition, the granular biochemical insights afforded by knowing specific sites of protein modifications of covalently acting natural products enable the pharmacological interrogation of these sites with more synthetically tractable covalently acting small molecules whose structures are more easily tuned. Both discovering binding pockets and targets hit by natural products and exploiting druggable modalities targeted by natural products with simpler molecules may overcome some of the challenges faced with translating natural products into drugs.
A blog highlighting recent publications in the area of covalent modification of proteins, particularly relating to covalent-modifier drugs. @CovalentMod on Twitter, @covalentmod@mstdn.science on Mastodon, and @covalentmod.bsky.social on BlueSky
From Mechanism-Based Retaining Glycosidase Inhibitors to Activity-Based Glycosidase Profiling
Marta Artola, Johannes M. F. G. Aerts, Gijsbert A. van der Marel, Carme Rovira, Jeroen D. C. Codée, Gideon J. Davies, and Herman S. Overkl...
-
Linqi Cheng Yixian Wang, Yiming Guo, Sophie S. Zhang Han Xiao C ell Chemical Biology, 2024 Volume 31, 3, 428 - 445 https://doi.org/10.10...
-
Tianyang Yan , Lisa Boatner , Liujuan Cui , Peter Tontonoz , Keriann Backus bioRxiv 2023.10.17.562832; doi: https://doi.or...
-
Nathalie M. Grob, Clint Remarcik, Simon L. Rössler, Jeffrey Y. K. Wong, John C. K. Wang, Jason Tao, Corey L. Smith, Andrei Loas, Stephen L. ...