Hong Lin, Min Wang, Yang W. Zhang, Shuilong Tong, Raul A. Leal, Rupa Shetty, Kris Vaddi, and Juan I. Luengo
ACS Med. Chem. Lett., 2019
DOI: 10.1021/acsmedchemlett.9b00074
Protein arginine methyltransferase 5 (PRMT5) is known to symmetrically dimethylate numerous cytosolic and nuclear proteins that are involved in a variety of cellular processes. Recent findings have revealed its potential as a cancer therapeutic target. PRMT5 possesses a cysteine (C449) in the active site, unique to PRMT5. Therefore, covalent PRMT5 inhibition is an attractive chemical approach. Herein, we report an exciting discovery of a series of novel hemiaminals that under physiological conditions can be converted to aldehydes and react with C449 to form covalent adducts, which presumably undergo an unprecedented elimination to form the thiol-vinyl ethers, as indicated by electron density in the co-crystal structure of the PRMT5/MEP50 complex.
A blog highlighting recent publications in the area of covalent modification of proteins, particularly relating to covalent-modifier drugs. @CovalentMod on Twitter, @covalentmod@mstdn.science on Mastodon, and @covalentmod.bsky.social on BlueSky
Selective Protein (Post-)modifications through Dynamic Covalent Chemistry: Self-activated SNAr Reactions
Ferran Esteve, Jean-Louis Schmitt, Sergii Kolodych, Oleksandr Koniev, and Jean-Marie Lehn Journal of the American Chemical Society 2025 DOI...
-
Linqi Cheng Yixian Wang, Yiming Guo, Sophie S. Zhang Han Xiao C ell Chemical Biology, 2024 Volume 31, 3, 428 - 445 https://doi.org/10.10...
-
Mariko Takahashi, Harrison B. Chong,Siwen Zhang, Tzu-Yi Yang,Matthew J. Lazarov,Stefan Harry,Michelle Maynard, Brendan Hilbert,Ryan D. White...
-
Özge Ünsal, Z. Selin Bacaksiz, Vladislav Khamraev, Vittorio Montanari, Martin Beinborn, and Krishna Kumar ACS Chemical Biology 2024 DOI: ...