Nature Chemical Biology, 2019, 15, 737–746
Ligand-dependent protein degradation has emerged as a compelling strategy to pharmacologically control the protein content of cells. So far, however, only a limited number of E3 ligases have been found to support this process. Here, we use a chemical proteomic strategy that leverages broadly reactive, cysteine-directed electrophilic fragments coupled to selective ligands for intracellular proteins (for example, SLF for FKBP12, JQ1 for BRD4) to screen for heterobifunctional degrader compounds (or proteolysis targeting chimeras, PROTACs) that operate by covalent adduction of E3 ligases. This approach identified DCAF16—a poorly characterized substrate recognition component of CUL4-DDB1 E3 ubiquitin ligases—as a target of electrophilic PROTACs that promote the nuclear-restricted degradation of proteins. We find that only a modest fraction (~10–40%) of DCAF16 needs to be modified to support protein degradation, pointing to the potential for electrophilic PROTACs to induce neosubstrate degradation without substantially perturbing the function of the participating E3 ligase.
A blog highlighting recent publications in the area of covalent modification of proteins, particularly relating to covalent-modifier drugs. @CovalentMod on Twitter, @covalentmod@mstdn.science on Mastodon, and @covalentmod.bsky.social on BlueSky
Lysine-Targeted Covalent Inhibitors of PI3Kδ Synthesis and Screening by In Situ Interaction Upgradation
Bo Yuan, Yifan Feng, Mengyan Ma, Weiming Duan, Yujie Wu, Jiaxin Liu, Hong-Yi Zhao, Zhe Yang, San-Qi Zhang, and Minhang Xin Journal of Medici...
-
Linqi Cheng Yixian Wang, Yiming Guo, Sophie S. Zhang Han Xiao C ell Chemical Biology, 2024 Volume 31, 3, 428 - 445 https://doi.org/10.10...
-
Nathalie M. Grob, Clint Remarcik, Simon L. Rössler, Jeffrey Y. K. Wong, John C. K. Wang, Jason Tao, Corey L. Smith, Andrei Loas, Stephen L. ...
-
Guanghui Tang , Wei Wang , Chengjun Zhu , Huisi Huang , Peng Chen , Xuan Wang , Manyi Xu , Jie Sun , Chong-Jing Zhang , Qicai Xiao ...