Wednesday, February 22, 2023

2-Ethynylbenzaldehyde-Based, Lysine-Targeting Irreversible Covalent Inhibitors for Protein Kinases and Nonkinases

Peng Chen, Guanghui Tang, Chengjun Zhu, Jie Sun, Xuan Wang, Menghua Xiang, Huisi Huang, Wei Wang, Lin Li, Zhi-Min Zhang, Liqian Gao, and Shao Q. Yao 

Journal of the American Chemical Society
 2023 145 (7), 3844-3849
DOI: 10.1021/jacs.2c11595

Lysine-targeting irreversible covalent inhibitors have attracted growing interests in recent years, especially in the fields of kinase research. Despite encouraging progress, few chemistries are available to develop inhibitors that are exclusively lysine-targeting, selective, and cell-active. We report herein a 2-ethynylbenzaldehyde (EBA)-based, lysine-targeting strategy to generate potent and selective small-molecule inhibitors of ABL kinase by selectively targeting the conserved catalytic lysine in the enzyme. We showed the resulting compounds were cell-active, capable of covalently engaging endogenous ABL kinase in K562 cells with long-residence time and few off-targets. We further validated the generality of this strategy by developing EBA-based irreversible inhibitors against EGFR (a kinase) and Mcl-1 (a nonkinase) that covalently reacted with the catalytic and noncatalytic lysine within each target.



N-Acyl-N-alkyl/aryl Sulfonamide Chemistry Assisted by Proximity for Modification and Covalent Inhibition of Endogenous Proteins in Living Systems

Tomonori Tamura and Itaru Hamachi Accounts of Chemical Research 2025 58 (1), 87-100 DOI: 10.1021/acs.accounts.4c00628 Selective chemical mo...