Thursday, February 2, 2023

Covalent Protein Inhibitors via Tyrosine Conjugation with Cyclic Imine Mannich Electrophiles.

Wang S, Hadisurya M, Tao WA, Dykhuizen E, Krusemark C.

ChemRxiv, 2022

https://chemrxiv.org/engage/chemrxiv/article-details/634cc21fe3f3ee0b5e5cbcee

Targeted covalent inhibitors (TCIs) have increased in popularity among drug candidates and chemical probes. Among current TCIs, the chemistry employed is largely limited to labeling cysteine and lysine side chains. Tyrosine is an attractive residue for TCIs due to its enrichment at protein-protein interfaces. Here, we investigate the utility of cyclic imine Mannich electrophiles as covalent warheads to specifically target a pro-tein tyrosine adjacent to an inhibitor binding pocket. We characterized the intrinsic reaction rates of several cyclic imines to tyrosine and identified the iminolactone to be suitable for a covalent inhibitor (second order rate constant of 0.0029 M-1 s-1). We appended the cyclic imine warheads to a CBX8 chromodomain inhibitor to label a non-conserved tyrosine, which markedly improves both the potency and selectivity of the inhibitor for CBX8 in vitro and in cells. These results indicate that Mannich electrophiles are promising and robust chemical warheads for tyrosine bioconjugation and covalent inhibitors.



N-Acyl-N-alkyl/aryl Sulfonamide Chemistry Assisted by Proximity for Modification and Covalent Inhibition of Endogenous Proteins in Living Systems

Tomonori Tamura and Itaru Hamachi Accounts of Chemical Research 2025 58 (1), 87-100 DOI: 10.1021/acs.accounts.4c00628 Selective chemical mo...