Sunday, April 28, 2024

Discovery of a Tunable Heterocyclic Electrophile 4-Chloro-pyrazolopyridine That Defines a Unique Subset of Ligandable Cysteines

Hong-Rae Kim, David P. Byun, Kalyani Thakur, Jennifer Ritchie, Yixin Xie, Ronald Holewinski, Kiall F. Suazo, Mckayla Stevens, Hope Liechty, Ravichandra Tagirasa, Yihang Jing, Thorkell Andresson, Steven M. Johnson, and Euna Yoo

ACS Chemical Biology 2024

https://doi.org/10.1021/acschembio.4c00025

Electrophilic small molecules with novel reactivity are powerful tools that enable activity-based protein profiling and covalent inhibitor discovery. Here, we report a reactive heterocyclic scaffold, 4-chloro-pyrazolopyridine (CPzP) for selective modification of proteins via a nucleophilic aromatic substitution (SNAr) mechanism. Chemoproteomic profiling reveals that CPzPs engage cysteines within functionally diverse protein sites including ribosomal protein S5 (RPS5), inosine monophosphate dehydrogenase 2 (IMPDH2), and heat shock protein 60 (HSP60). Through the optimization of appended recognition elements, we demonstrate the utility of CPzP for covalent inhibition of prolyl endopeptidase (PREP) by targeting a noncatalytic active-site cysteine. This study suggests that the proteome reactivity of CPzPs can be modulated by both electronic and steric features of the ring system, providing a new tunable electrophile for applications in chemoproteomics and covalent inhibitor design.

 


Redirecting the pioneering function of FOXA1 with covalent small molecules

Sang Joon Won, Yuxiang Zhang, Christopher J. Reinhardt,Lauren M. Hargis, Nicole S. MacRae,Kristen E. DeMeester,Evert Njomen,Jarrett R. Remsb...