Monday, April 22, 2024

Thiophene-fused γ-lactams inhibit the SARS-CoV-2 main protease via reversible covalent acylation

Gayatri Gayatri , Lennart Brewitz , Lewis Ibbotson , Eidarus Saleh , Shyam Basak , Hani Choudhry and Christopher J Schofield

Chem. Sci., 2024

DOI: 10.1039/D4SC01027B (Edge Article) 

Enzyme inhibitors working by O-acylation of nucleophilic serine residues are of immense medicinal importance, as exemplified by the β-lactam antibiotics. By contrast, inhibition of nucleophilic cysteine enzymes by S-acylation has not been widely exploited for medicinal applications. The SARS-CoV-2 main protease (Mpro) is a nucleophilic cysteine protease and a validated therapeutic target for COVID-19 treatment using small-molecule inhibitors. The clinically used Mpro inhibitors nirmatrelvir and simnotrelvir work via reversible covalent reaction of their electrophilic nitrile with the Mpro nucleophilic cysteine (Cys145). We report combined structure activity relationship and mass spectrometric studies revealing that appropriately functionalized γ-lactams can potently inhibit Mpro by reversible covalent reaction with Cys145 of Mpro. The results suggest that γ-lactams have potential as electrophilic warheads for development of covalently reacting small-molecule inhibitors of Mpro and, by implication, other nucleophilic cysteine enzymes.



Comprehensive Exploration of Isocitrate Dehydrogenase (IDH) Mutations: Tumorigenesis, Drug Discovery, and Covalent Inhibitor Advances

Conghao Gai, Hairong Zeng ,  Haoming Xu, Xiaoyun Chai, Yan Zou, Chunlin Zhuang, Guangbo Ge, Qingjie Zhao  European Journal of Medicinal Chem...