Luhong Wang, Jingyuan Zhao, Yao Yao, Changyuan Wang, Jianbin Zhang, Xiaohong Shu, Xiuli Sun, Yanxia Li, Kexin Liu, Hong Yuan, Xiaodong Ma
European Journal of Medicinal Chemistry, 2017
DOI: 10.1016/j.ejmech.2017.09.024
Cancer remains the most serious disease that threatens human health. Molecularly targeted cancer therapies, specifically small-molecule protein kinase inhibitors, form an important part of cancer therapy. Targeted covalent modification represents a proven approach to drug discovery with the recent FDA approvals of afatanib, ibrutinib, and osimertinib agents, which were designed to undergo an irreversible hetero-Michael addition reaction with a unique cysteine residue of a specific protein. Covalent inhibitors possess numerous advantages, including increased biochemical efficacy, longer duration of action, the high potential for improved therapeutic index due to lower effective dose, and the potential to inhibit certain drug resistance mechanisms. In this regard, the novel targeted anticancer agents whose activity is presumably dependent upon a hetero-Michael addition reaction with thiols are summarized in this article.
A blog highlighting recent publications in the area of covalent modification of proteins, particularly relating to covalent-modifier drugs. @CovalentMod on Twitter, @covalentmod@mstdn.science on Mastodon, and @covalentmod.bsky.social on BlueSky
State-of-the-art covalent virtual screening with AlphaFold3
Yoav Shamir, Nir London bioRxiv 2025.03.19.642201; doi: https://doi.org/10.1101/2025.03.19.642201 Recent years have seen an explosion in the...
-
DOI Ansgar Oberheide, Maxime van den Oetelaar, Jakob Scheele, Jan Borggräfe, Semmy Engelen, Michael Sattler, Christian Ottmann, ...
-
Mariko Takahashi, Harrison B. Chong,Siwen Zhang, Tzu-Yi Yang,Matthew J. Lazarov,Stefan Harry,Michelle Maynard, Brendan Hilbert,Ryan D. White...
-
Özge Ünsal, Z. Selin Bacaksiz, Vladislav Khamraev, Vittorio Montanari, Martin Beinborn, and Krishna Kumar ACS Chemical Biology 2024 DOI: ...