Jonathan Pettinger, Keith Jones, Matthew David Cheeseman
Angewandte Chemie International Edition, 2017
DOI: 10.1002/anie.201707630
Targeted covalent inhibitors have gained widespread attention in drug discovery as a validated method to circumvent acquired resistance in oncology. This strategy exploits small molecule/protein crystal structures to design tight-binding ligands with appropriately positioned electrophilic warheads. Whilst most focus has been on targeting binding site cysteine residues, targeting nucleophilic lysine residues can also represent a viable approach to irreversible inhibition. However, owing to the basicity of the ε-amino group in lysine, this strategy generates a number of specific challenges. Herein, we review the key principles for inhibitor design, give historical examples and present recent developments that demonstrate its potential for future drug discovery.
A blog highlighting recent publications in the area of covalent modification of proteins, particularly relating to covalent-modifier drugs. @CovalentMod on Twitter, @covalentmod@mstdn.science on Mastodon, and @covalentmod.bsky.social on BlueSky
Discovery of STX-721, a Covalent, Potent, and Highly Mutant-Selective EGFR/HER2 Exon20 Insertion Inhibitor for the Treatment of Non-Small Cell Lung Cancer
Benjamin C. Milgram, Deanna R. Borrelli, Natasja Brooijmans, Jack A. Henderson, Brendan J. Hilbert, Michael R. Huff, Takahiro Ito, Erica L. ...
-
Linqi Cheng Yixian Wang, Yiming Guo, Sophie S. Zhang Han Xiao C ell Chemical Biology, 2024 Volume 31, 3, 428 - 445 https://doi.org/10.10...
-
Mariko Takahashi, Harrison B. Chong,Siwen Zhang, Tzu-Yi Yang,Matthew J. Lazarov,Stefan Harry,Michelle Maynard, Brendan Hilbert,Ryan D. White...
-
Özge Ünsal, Z. Selin Bacaksiz, Vladislav Khamraev, Vittorio Montanari, Martin Beinborn, and Krishna Kumar ACS Chemical Biology 2024 DOI: ...