Jonathan Pettinger, Keith Jones, Matthew David Cheeseman
Angewandte Chemie International Edition, 2017
DOI: 10.1002/anie.201707630
Targeted covalent inhibitors have gained widespread attention in drug discovery as a validated method to circumvent acquired resistance in oncology. This strategy exploits small molecule/protein crystal structures to design tight-binding ligands with appropriately positioned electrophilic warheads. Whilst most focus has been on targeting binding site cysteine residues, targeting nucleophilic lysine residues can also represent a viable approach to irreversible inhibition. However, owing to the basicity of the ε-amino group in lysine, this strategy generates a number of specific challenges. Herein, we review the key principles for inhibitor design, give historical examples and present recent developments that demonstrate its potential for future drug discovery.
A blog highlighting recent publications in the area of covalent modification of proteins, particularly relating to covalent-modifier drugs. @CovalentMod on Twitter, @covalentmod@mstdn.science on Mastodon, and @covalentmod.bsky.social on BlueSky
Discovery and Optimization of a Covalent AKR1C3 Inhibitor
R. Justin Grams, Wesley J. Wolfe, Robert J. Seal, James Veccia, and Ku-Lung Hsu Journal of Medicinal Chemistry 2025 DOI: 10.1021/acs.jmedch...
-
DOI Ansgar Oberheide, Maxime van den Oetelaar, Jakob Scheele, Jan Borggräfe, Semmy Engelen, Michael Sattler, Christian Ottmann, ...
-
Özge Ünsal, Z. Selin Bacaksiz, Vladislav Khamraev, Vittorio Montanari, Martin Beinborn, and Krishna Kumar ACS Chemical Biology 2024 DOI: ...
-
Klett, T., Schwer, M., Ernst, L. N., Engelhardt, M. U., Jaag, S. J., Masberg, B., … Boeckler, F. M. Drug Design, Development and Therapy, 20...